Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes
<p>UV-vis spectrum of hBN, B<sub>4</sub>C, hBN-ALA, B<sub>4</sub>C-ALA, and ALA.</p> "> Figure 2
<p>Images (<b>A</b>) hBN, (<b>B</b>) hBN-ALA (<b>C</b>) B<sub>4</sub>C, and (<b>D</b>) B<sub>4</sub>C-ALA at 100 nm scale under TEM.</p> "> Figure 3
<p>FTIR spectra of hBN-ALA, B<sub>4</sub>C-ALA, and ALA.</p> "> Figure 4
<p>MTT assay in HDF cell cultures for hBN, hBN-ALA, B<sub>4</sub>C, B<sub>4</sub>C-ALA, and ALA at 24 h. Symbol (*) represents statistically significant difference (<span class="html-italic">p</span> ≤ 0.05) compared to the negative control.</p> "> Figure 5
<p>Effects of 50 ug/mL concentrations of hBN, hBN-ALA, C<sub>4</sub>B, C<sub>4</sub>B-ALA, and ALA on HDF cells culture monitored at 20× magnification under the invert microscope. (<b>A1</b>) hBN at 0 h, (<b>A2</b>) hBN at 24 h, (<b>B1</b>) hBN-ALA at 0 h, (<b>B2</b>) hBN-ALA at 24 h, (<b>C1</b>) B<sub>4</sub>C at 0 h, (<b>C2</b>) B<sub>4</sub>C at 24 h, (<b>D1</b>) B<sub>4</sub>C-ALA at 0 h, (<b>D2</b>) B<sub>4</sub>C-ALA at 24 h, (<b>E1</b>) ALA at 0 h, (<b>E2</b>) ALA at 24 h, (<b>F1</b>) Control at 0 h, (<b>F2</b>) Control at 24 h.</p> "> Figure 6
<p>The wound gap distance for the all groups after 24 h. Symbol (*) represents statistically significant difference (<span class="html-italic">p</span> ≤ 0.05) compared to the negative control.</p> "> Figure 7
<p>Antimicrobial activity of hBN, hBN-ALA, B<sub>4</sub>C, B<sub>4</sub>C-ALA, and ALA nanoparticles on <span class="html-italic">S. aureus</span> and <span class="html-italic">E. coli</span> bacterial strains for 24 h. Symbol (*) represents statistically significant difference (<span class="html-italic">p</span> ≤ 0.05) compared to the negative control.</p> "> Scheme 1
<p>Chemical interaction reaction of LA to hBN and B<sub>4</sub>C.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Conjugations of Alpha Lipoic Acid (ALA) onto hBN and C4B Nanoparticles
2.3. Characterizations of Nanoconjugates
2.4. Human Dermal Fibroblasts (HDFa) Cell Culture and Cell Viability Analysis
2.5. Total Antioxidant Capacity (TAS) and Total Oxidant Status (TOS)
2.6. Wound Healing Test
2.7. Antimicrobial Activity
3. Results
3.1. Characterizations of Nanoconjugates
3.2. Human Dermal Fibroblasts (HDFa) Cell Culture and Cell Viability Analysis
3.3. Total Antioxidant Capacity (TAC) and Total Oxidant Status (TOS)
3.4. Wound Healing Test
3.5. Antimicrobial Activity Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baktir, G. Wound Repair and Experimental Wound Models. Experimed 2020, 9, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Robson, M.C.; Steed, D.L.; Franz, M.G. Wound healing: Biologic features and approaches to maximize healing trajectories. Curr. Probl. Surg. 2001, 38, A1. [Google Scholar] [CrossRef] [PubMed]
- Broughton, G.; Janis, J.E.; Attinger, C.E. The basic science of wound healing. Plast. Reconstr. Surg. 2006, 117, 12S–34S. [Google Scholar] [CrossRef]
- Guo, S.; DiPietro, L.A. Critical review in oral biology & medicine: Factors affecting wound healing. J. Dent. Res. 2010, 89, 219–229. [Google Scholar]
- Sandhiya, S.; Dkhar, S.A.; Surendiran, A. Emerging trends of nanomedicine—An overview. Fundam. Clin. Pharmacol. 2009, 23, 263–269. [Google Scholar] [CrossRef]
- Losi, P.; Briganti, E.; Magera, A.; Spiller, D.; Ristori, C.; Battolla, B.; Balderi, M.; Kull, S.; Balbarini, A.; Di Stefano, R.; et al. Tissue response to poly(ether)urethane-polydimethylsiloxane-fibrin composite scaffolds for controlled delivery of pro-angiogenic growth factors. Biomaterials 2010, 31, 5336–5344. [Google Scholar] [CrossRef]
- Tong, C.; Zhong, X.; Yang, Y.; Liu, X.; Zhong, G.; Xiao, C.; Liu, B.; Wang, W.; Yang, X. PB@PDA@Ag nanosystem for synergistically eradicating MRSA and accelerating diabetic wound healing assisted with laser irradiation. Biomaterials 2020, 243, 119936. [Google Scholar] [CrossRef]
- Nzietchueng, R.M.; Dousset, B.; Franck, P.; Benderdour, M.; Nabet, P.; Hess, K. Mechanisms implicated in the effects of boron on wound healing. J. Trace Elem. Med. Biol. 2002, 16, 239–244. [Google Scholar] [CrossRef] [PubMed]
- KONCA, M.; KORKMAZ, M. Comparison of Effects of Administration of Oral or Topical Boron on Wound Healing and Oxidative Stress in Rats. Kocatepe Vet. J. 2020, 13, 11–18. [Google Scholar] [CrossRef]
- Blech, M.F.; Martin, C.; Borrelly, J.; Hartemann, P. Traitement des plaies profondes avec perte de substance. interet d’une solution d’acide borique A 3 P. 100. Press. Med. 1990, 19, 1050–1052. [Google Scholar]
- Litovitz, T.L.; Klein-Schwartz, W.; Oderda, G.M.; Schmitz, B.F. Clinical manifestations of toxicity in a series of 784 boric acid ingestions. Am. J. Emerg. Med. 1988, 6, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Linden, C.H.; Hall, A.H.; Kulig, K.W.; Rumack, B.H. Acute ingestions of boric acid. J. Toxicol. Clin. Toxicol. 1986, 24, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Brufani, M.; Figliola, R. (R)-α-lipoic acid oral liquid formulation: Pharmacokinetic parameters and therapeutic efficacy. Acta Biomed. 2014, 85, 108–115. [Google Scholar] [PubMed]
- Yıldırım, Ö.Ç.; Arslan, M.E.; Öner, S.; Cacciatore, I.; Di Stefano, A.; Mardinoglu, A.; Turkez, H. Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2022, 23, 8249. [Google Scholar] [CrossRef] [PubMed]
- Aydin, N.; Turkez, H.; Tozlu, O.O.; Arslan, M.E.; Yavuz, M.; Sonmez, E.; Ozpolat, O.F.; Cacciatore, I.; Di Stefano, A.; Mardinoglu, A. Ameliorative Effects by Hexagonal Boron Nitride Nanoparticles against Beta Amyloid Induced Neurotoxicity. Nanomaterials 2022, 12, 2690. [Google Scholar] [CrossRef]
- Türkez, H.; Arslan, M.E.; Mardinoğlu, A. Pivotal role of micronucleus test in drug discovery. In Micronucleus Assay: An Overview; Elsevier B.V.: Amsterdam, The Netherlands, 2019; pp. 49–75. ISBN 9781536166798. [Google Scholar]
- Wang, J.; Xia, Q. Alpha-lipoic acid-loaded nanostructured lipid carrier: Sustained release and biocompatibility to HaCaT cells in vitro. Drug Deliv. 2014, 21, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, H.; Zhou, X.; Tang, Z.; Liu, G.; Liu, G.; Xia, Q. Physicochemical characterization, photo-stability and cytotoxicity of coenzyme Q10-loading nanostructured lipid carrier. J. Nanosci. Nanotechnol. 2012, 12, 2136–2148. [Google Scholar] [CrossRef]
- Wetzler, C.; Kämpfer, H.; Stallmeyer, B.; Pfeilschifter, J.; Frank, S. Large and Sustained Induction of Chemokines during Impaired Wound Healing in the Genetically Diabetic Mouse: Prolonged Persistence of Neutrophils and Macrophages during the Late Phase of Repair. J. Investig. Dermatol. 2000, 115, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Braun, L.R.; Fisk, W.A.; Lev-Tov, H.; Kirsner, R.S.; Isseroff, R.R. Diabetic Foot Ulcer: An Evidence-Based Treatment Update. Am. J. Clin. Dermatol. 2014, 15, 267–281. [Google Scholar] [CrossRef]
- Kar, Y.; Şen, N.; Demirbaş, A. Boron minerals in turkey, their application areas and importance for the country’s economy. Miner. Energy-Raw Mater. Rep. 2006, 20, 2–10. [Google Scholar] [CrossRef]
- Emanet, M.; Sen, Ö.; Taşkin, I.Ç.; Çulha, M. Synthesis, Functionalization, and Bioapplications of Two-Dimensional Boron Nitride Nanomaterials. Front. Bioeng. Biotechnol. 2019, 7, 363. [Google Scholar] [CrossRef]
- Khaliq, H.; Juming, Z.; Ke-Mei, P. The Physiological Role of Boron on Health. Biol. Trace Elem. Res. 2018, 186, 31–51. [Google Scholar] [CrossRef] [PubMed]
- Demirci, S.; Doğan, A.; Aydın, S.; Dülger, E.Ç.; Şahin, F. Boron promotes streptozotocin-induced diabetic wound healing: Roles in cell proliferation and migration, growth factor expression, and inflammation. Mol. Cell. Biochem. 2016, 417, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Geyikoğlu, F.; Açıkyıldız, M.; Tatar, A. Microarray assisted toxicological investigations of boron carbide nanoparticles on human primary alveolar epithelial cells. Chem. Biol. Interact. 2019, 300, 131–137. [Google Scholar] [CrossRef]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Açikyildiz, M.; Tatar, A.; Geyikoğlu, F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: Emphasis on toxicogenomics. Cytotechnology 2019, 71, 351–361. [Google Scholar] [CrossRef]
- Küçükdoğru, R.; Türkez, H.; Arslan, M.E.; Tozlu, Ö.Ö.; Sönmez, E.; Mardinoğlu, A.; Cacciatore, I.; Di Stefano, A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson’s disease model against MPP+ induced apoptosis. Metab. Brain Dis. 2020, 35, 947–957. [Google Scholar] [CrossRef]
- Stodolak-Zych, E.; Gubernat, A.; Ścisłowska-Czarnecka, A.; Chadzińska, M.; Zych, Ł.; Zientara, D.; Nocuń, M.; Jeleń, P.; Bućko, M.M. The influence of surface chemical composition of particles of boron carbide powders on their biological properties. Appl. Surf. Sci. 2022, 582, 152380. [Google Scholar] [CrossRef]
- Singh, P.; Kaur, M.; Singh, K.; Meena, R.; Kumar, M.; Yun, J.-H.; Thakur, A.; Nakagawa, F.; Suzuki, M.; Nakamura, H.; et al. Fluorescent boron carbide quantum dots synthesized with a low-temperature solvothermal approach for boron neutron capture therapy. Phys. E Low-Dimens. Syst. Nanostruct. 2021, 132, 114766. [Google Scholar] [CrossRef]
- Xu, Z.; Han, S.; Gu, Z.; Wu, J. Advances and Impact of Antioxidant Hydrogel in Chronic Wound Healing. Adv. Healthc. Mater. 2020, 9, 1901502. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, J.; Fu, Y.; Yang, L.; Zhu, F.; Liu, X.; Gu, Z.; Li, Y. Antioxidant shape amphiphiles for accelerated wound healing. J. Mater. Chem. B 2020, 8, 7018–7023. [Google Scholar] [CrossRef]
- Fitzmaurice, S.D.; Sivamani, R.K.; Isseroff, R.R. Antioxidant Therapies for Wound Healing: A Clinical Guide to Currently Commercially Available Products. Skin Pharmacol. Physiol. 2011, 24, 113–126. [Google Scholar] [CrossRef]
- Sinha, M.; Mardinoglu, A.; Ghose, J.; Singh, K. Editorial: Redox Homeostasis and Cancer. Oxid. Med. Cell. Longev. 2020, 2020, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Rymon-Lipinski, T.; Fichtner, R.; Benecke, T. Study of the oxidation protection of MgO-C refractories by means of boron carbide. Steel Res. 1992, 63, 493–495. [Google Scholar] [CrossRef]
- Rymon-Lipinski, T.; Wolf, P. Reaction processes in the interior of an MgO-carbon brick with boron carbide additive. Steel Res. 1993, 64, 123–127. [Google Scholar] [CrossRef]
- Li, Y.; Yang, M.; Xu, B.; Sun, Q.; Zhang, W.; Zhang, Y.; Meng, F. Synthesis, structure and antioxidant performance of boron nitride (hexagonal) layers coating on carbon nanotubes (multi-walled). Appl. Surf. Sci. 2018, 450, 284–291. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Y.; Li, W.; Li, J.; Yu, H.; Liu, L.; Wu, G.; Yang, T.; Luo, L. Preparation of boron nitride nanosheet-coated carbon fibres and their enhanced antioxidant and microwave-absorbing properties. RSC Adv. 2018, 8, 17944–17949. [Google Scholar] [CrossRef] [Green Version]
- Benderdour, M.; Van Bui, T.; Hess, K.; Dicko, A.; Belleville, F.; Dousset, B. Effects of boron derivatives on extracellular matrix formation. J. Trace Elem. Med. Biol. 2000, 14, 168–173. [Google Scholar] [CrossRef]
- Benderdour, M.; Hess, K.; Dzondo-Gadet, M.; Nabet, P.; Belleville, F.; Dousset, B. Boron Modulates Extracellular Matrix and TNFα Synthesis in Human Fibroblasts. Biochem. Biophys. Res. Commun. 1998, 246, 746–751. [Google Scholar] [CrossRef]
- Tepedelen, B.E.; Soya, E.; Korkmaz, M. Boric Acid Reduces the Formation of DNA Double Strand Breaks and Accelerates Wound Healing Process. Biol. Trace Elem. Res. 2016, 174, 309–318. [Google Scholar] [CrossRef]
- Gölge, U.H.; Kaymaz, B.; Arpaci, R.; Kömürcü, E.; Göksel, F.; Güven, M.; Güzel, Y.; Cevizci, S. Effects of Boric Acid on Fracture Healing: An Experimental Study. Biol. Trace Elem. Res. 2015, 167, 264–271. [Google Scholar] [CrossRef]
- Chebassier, N.; Ouijja, E.H.; Viegas, I.; Dreno, B. Stimulatory Effect of Boron and Manganese Salts on Keratinocyte Migration. Acta Derm. Venereol. 2004, 84, 191–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Wu, C.; Lv, X.; Tang, X.; Zhao, X.; Yan, H.; Jiang, H.; Wang, X. Discovery of ferrocene-carborane derivatives as novel chemical antimicrobial agents against multidrug-resistant bacteria. Sci. China Chem. 2012, 55, 2388–2395. [Google Scholar] [CrossRef]
- Yılmaz, M.T. Minimum inhibitory and minimum bactericidal concentrations of boron compounds against several bacterial strains. Turk. J. Med. Sci. 2012, 42, 1423–1429. [Google Scholar] [CrossRef]
- Totani, T.; Aono, K.; Yamamoto, K.; Tawara, K. Synthesis and in vitro antimicrobial property of o-carborane derivatives. J. Med. Chem. 1981, 24, 1492–1499. [Google Scholar] [CrossRef] [PubMed]
- Fink, K.; Uchman, M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021, 431, 213684. [Google Scholar] [CrossRef]
- Cencetti, C.; Bellini, D.; Pavesio, A.; Senigaglia, D.; Passariello, C.; Virga, A.; Matricardi, P. Preparation and characterization of antimicrobial wound dressings based on silver, gellan, PVA and borax. Carbohydr. Polym. 2012, 90, 1362–1370. [Google Scholar] [CrossRef]
- Rezvan, G.; Pircheraghi, G.; Bagheri, R. Curcumin incorporated PVA-borax dual delivery hydrogels as potential wound dressing materials—Correlation between viscoelastic properties and curcumin release rate. J. Appl. Polym. Sci. 2018, 135, 46734. [Google Scholar] [CrossRef]
Groups | TAC (mmol Trolox Equiv./L) | TOS (µmol H2O2 Equiv./L) |
---|---|---|
Control | 0.081 ± 0.003 | 1.052 ± 0.002 |
hBN (50 µg/mL) | 0.211 ± 0.006 * | 1.052 ± 0.004 |
hBN-ALA (50 µg/mL) | 0.261 ± 0.007 * | 1.063 ± 0.008 |
B4C (50 µg/mL) | 0.158 ± 0.031 * | 1.032 ± 0.001 |
B4C-ALA (50 µg/mL) | 0.161 ± 0.031 * | 0.990 ± 0.006 |
ALA (50 µg/mL) | 0.224 ± 0.055 * | 1.019 ± 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Türkez, H.; Yıldırım, Ö.Ç.; Öner, S.; Kadı, A.; Mete, A.; Arslan, M.E.; Şahin, İ.O.; Yapça, Ö.E.; Mardinoğlu, A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 2023, 15, 149. https://doi.org/10.3390/pharmaceutics15010149
Türkez H, Yıldırım ÖÇ, Öner S, Kadı A, Mete A, Arslan ME, Şahin İO, Yapça ÖE, Mardinoğlu A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics. 2023; 15(1):149. https://doi.org/10.3390/pharmaceutics15010149
Chicago/Turabian StyleTürkez, Hasan, Özge Çağlar Yıldırım, Sena Öner, Abdurrahim Kadı, Abdulkadir Mete, Mehmet Enes Arslan, İrfan Oğuz Şahin, Ömer Erkan Yapça, and Adil Mardinoğlu. 2023. "Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes" Pharmaceutics 15, no. 1: 149. https://doi.org/10.3390/pharmaceutics15010149
APA StyleTürkez, H., Yıldırım, Ö. Ç., Öner, S., Kadı, A., Mete, A., Arslan, M. E., Şahin, İ. O., Yapça, Ö. E., & Mardinoğlu, A. (2023). Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics, 15(1), 149. https://doi.org/10.3390/pharmaceutics15010149