Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Outcome Variables
2.3. Exposure Variables
2.4. Covariates
2.5. Statistical Methods
3. Results
3.1. Sample Characteristics
3.2. Trends in Fat Intake and the Prevalence of Overweight and Obesity
3.3. Associations of Fat Intake and a High-Fat Diet with Body Weight and the Risk of Overweight and Obesity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Health Observatory (GHO) Data. Available online: https://www.who.int/gho/ncd/risk_factors/overweight_text/en/ (accessed on 22 August 2020).
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef] [Green Version]
- Gordon-Larsen, P.; Wang, H.; Popkin, B.M. Overweight dynamics in Chinese children and adults. Obes. Rev. 2014, 15, 37–48. [Google Scholar] [CrossRef]
- Jaacks, L.M.; Gordon-Larsen, P.; Mayer-Davis, E.J.; Adair, L.S.; Popkin, B. Age, period and cohort effects on adult body mass index and overweight from 1991 to 2009 in China: The China Health and Nutrition Survey. Int. J. Epidemiol. 2013, 42, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, L.; Qu, W. New national data show alarming increase in obesity and noncommunicable chronic diseases in China. Eur. J. Clin. Nutr. 2017, 71, 149–150. [Google Scholar] [CrossRef]
- Ng, S.W.; Howard, A.G.; Wang, H.J.; Su, C.; Zhang, B. The physical activity transition among adults in China: 1991–2011. Obes. Rev. 2014, 15, 27–36. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.W.; Norton, E.C.; Popkin, B.M. Why have physical activity levels declined among Chinese adults? Findings from the 1991–2006 China Health and Nutrition Surveys. Soc. Sci. Med. 2009, 68, 1305–1314. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Li, J.; Li, S.; Zhang, B.; Du, S.; Gordon-Larsen, P.; Adair, L.; Popkin, B. The expanding burden of cardiometabolic risk in China: The China Health and Nutrition Survey. Obes. Rev. 2012, 13, 810–821. [Google Scholar] [CrossRef] [Green Version]
- Chinese Nutrition Soceity. Chinese Dietary Guidelines; People’s Medical Publishing House: Beijing, China, 2016. [Google Scholar]
- Word Health Organization. Healthy Diet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 24 August 2020).
- Costa, C.S.; Rauber, F.; Leffa, P.S.; Sangalli, C.N.; Campagnolo, P.D.B.; Vitolo, M.R. Ultra-processed food consumption and its effects on anthropometric and glucose profile: A longitudinal study during childhood. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 177–184. [Google Scholar] [CrossRef]
- Cunha, D.B.; da Costa, T.H.M.; da Veiga, G.V.; Pereira, R.A.; Sichieri, R. Ultra-processed food consumption and adiposity trajectories in a Brazilian cohort of adolescents: ELANA study. Nutr. Diabetes 2018, 8, 28. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.C.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019, 20 (Suppl. 2), 10–19. [Google Scholar] [CrossRef]
- Mendonça, R.D.D.; Pimenta, A.M.; Gea, A.; de la Fuente-Arrillaga, C.; Martinez-Gonzalez, M.A.; Lopes, A.C.S.; Bes-Rastrollo, M. Ultraprocessed food consumption and risk of overweight and obesity: The University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 2016, 104, 1433–1440. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Hao, T.; Rimm, E.B.; Willett, W.C.; Hu, F.B. Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 2011, 364, 2392–2404. [Google Scholar] [CrossRef] [Green Version]
- Hall, K.D. Ultra-processed diets cause excess calorie intake and weight gain: A one-month inpatient randomized controlled trial of ad libitum food intake. Cell Matab. 2019, 30, 1–10. [Google Scholar] [CrossRef] [Green Version]
- US Department of Health and Human Services and US Department of Agriculture. 2015—2020 Dietary Guidelines for Americans, 8th ed.; USDA: Washington, DC, USA, 2015. [Google Scholar]
- The European Commission’s Science and Knowledge Service. Health Promotion and Disease Prevention. Available online: https://ec.europa.eu/jrc/en/health-knowledge-gateway/promotion-prevention/nutrition/fats (accessed on 24 August 2020).
- Adair, L.S.; Gordon-Larsen, P.; Du, S.F.; Zhang, B.; Popkin, B.M. The emergence of cardiometabolic disease risk in Chinese children and adults: Consequences of changes in diet, physical activity and obesity. Obes. Rev. 2014, 15, 49–59. [Google Scholar] [CrossRef]
- Du, S.; Mroz, T.A.; Zhai, F.; Popkin, B.M. Rapid income growth adversely affects diet quality in China—Particularly for the poor! Soc. Sci. Med. 2004, 59, 1505–1515. [Google Scholar] [CrossRef] [PubMed]
- Du, S.F.; Wang, H.J.; Zhang, B.; Zhai, F.Y.; Popkin, B.M. China in the period of transition from scarcity and extensive undernutrition to emerging nutrition-related non-communicable diseases, 1949–1992. Obes. Rev. 2014, 15, 8–15. [Google Scholar] [CrossRef]
- Zhai, F.; Wang, H.; Du, S.; Ge, K.; Popkin, B. The changing trend of dietary pattern of Chinese population: An eight province case study in China. Acta Nutr. Sin. 2002, 24, 342–346. [Google Scholar]
- Popkin, B.M.; Lu, B.; Zhai, F. Understanding the nutrition transition: Measuring rapid dietary changes in transitional countries. Public Health Nutr. 2002, 5, 947–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhai, F.; Zhang, B.; Popkin, B.M. Trends in Chinese snacking behaviors and patterns and the social-demographic role between 1991 and 2009. Asia Pac. J. Clin. Nutr. 2012, 21, 253–262. [Google Scholar]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.W.; Zhai, F.; Popkin, B.M. Impacts of China’s edible oil pricing policy on nutrition. Soc. Sci. Med. 2008, 66, 414–426. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.; Abdelhamid, A.; Moore, H.J.; Douthwaite, W.; Skeaff, C.M.; Summerbell, C.D. Effect of reducing total fat intake on body weight: Systematic review and meta-analysis of randomised controlled trials and cohort studies. BMJ 2012, 345, e7666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Word Health Organization. A Healthy Diet Sustainably Produced. Available online: https://www.who.int/nutrition/publications/nutrientrequirements/healhtydiet-information-sheet/en/ (accessed on 6 February 2020).
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhai, F.Y.; Du, S.F.; Popkin, B.M. The China Health and Nutrition Survey, 1989–2011. Obes. Rev. 2014, 15, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Liu, F. New trends in China’s regional economic development. In Regional Economic Development in China; Saw, S.-H., Wong, J., Eds.; Institute of Southeast Asian Studies: Singapore, 2009. [Google Scholar]
- Word Health Organization. Diet, Nutrition and the Prevention of Chronic Diseases: Report of a Joint WHO/FAO Expert Consultation; WHO Technical Report Series, No. 916; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Yao, M.; Lichtenstein, A.H.; Roberts, S.B.; Ma, G.; Gao, S.; Tucker, K.L.; McCrory, M.A. Relative influence of diet and physical activity on cardiovascular risk factors in urban Chinese adults. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 920–932. [Google Scholar] [CrossRef] [Green Version]
- Du, S.; Batis, C.; Wang, H.; Zhang, B.; Zhang, J.; Popkin, B.M. Understanding the patterns and trends of sodium intake, potassium intake, and sodium to potassium ratio and their effect on hypertension in China. Am. J. Clin. Nutr. 2014, 99, 334–343. [Google Scholar] [CrossRef] [Green Version]
- Zhai, F.; Guo, X.; Popkin, B.M.; Ma, L.; Wang, Q.; Yu, W.; Jin, S.; Ge, K. Evaluation of the 24-hour individual recall method in China. Food Nutr. Bull. 1996, 17, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, H.; Shi, Z.M.; Yuan, B.J.; Dai, Y.; Hu, G.; Wu, G.L.; Hussain, A. Interaction between physical activity and sleep duration in relation to insulin resistance among non-diabetic Chinese adults. BMC Public Health 2012, 12, 247. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.C.; Ge, K.; Popkin, B.M. The road to obesity or the path to prevention: Motorized transportation and obesity in China. Obes. Res. 2002, 10, 277–283. [Google Scholar] [CrossRef]
- Monda, K.L.; Adair, L.S.; Zhai, F.; Popkin, B.M. Longitudinal relationships between occupational and domestic physical activity patterns and body weight in China. Eur. J. Clin. Nutr. 2008, 62, 1318–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.W.; Popkin, B.M. Time use and physical activity: A shift away from movement across the globe. Obes. Rev. 2012, 13, 659–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piernas, C.; Popkin, B.M. Trends in snacking among U.S. children. Health Aff. 2010, 29, 398–404. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics. Mean Macronutrient Intake among Adults Aged 20 and Over, by Sex and Age: United States, Selected Years 1988–1994 through 2013–2016; National Center for Health Statistics: Atlanta, GA, USA, 2018.
- Jones-Smith, J.C.; Gordon-Larsen, P.; Siddiqi, A.; Popkin, B.M. Emerging disparities in overweight by educational attainment in Chinese adults (1989–2006). Int. J. Obes. 2012, 36, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Popkin, B.M.; Corvalan, C.; Grummer-Strawn, L.M. Dynamics of the double burden of malnutrition and the changing nutrition reality. Lancet 2020, 395, 65–74. [Google Scholar] [CrossRef]
- Bell, A.C.; Ge, K.; Popkin, B.M. Weight gain and its predictors in Chinese adults. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1079–1086. [Google Scholar] [CrossRef] [Green Version]
- Monda, K.L.; Popkin, B.M. Cluster analysis methods help to clarify the activity-BMI relationship of Chinese youth. Obes. Res. 2005, 13, 1042–1051. [Google Scholar] [CrossRef] [Green Version]
- Ng, S.W.; Norton, E.C.; Guilkey, D.K.; Popkin, B.M. Estimation of a dynamic model of weight. Empir. Econ. 2012, 42, 413–443. [Google Scholar] [CrossRef]
- Hu, S.; Wang, L.; Yang, D.; Li, L.; Togo, J.; Wu, Y.; Liu, Q.; Li, B.; Li, M.; Wang, G.; et al. Dietary Fat, but Not Protein or Carbohydrate, Regulates Energy Intake and Causes Adiposity in Mice. Cell Metab. 2018, 28, 415–431. [Google Scholar] [CrossRef] [Green Version]
- Subramaniam, A.; Landstrom, M.; Luu, A.; Hayes, K.C. The Nile Rat (Arvicanthis niloticus) as a Superior Carbohydrate-Sensitive Model for Type 2 Diabetes Mellitus (T2DM). Nutrients 2018, 10, 235. [Google Scholar] [CrossRef] [Green Version]
- Newman, L.P.; Bolhuis, D.P.; Torres, S.J.; Keast, R.S. Dietary fat restriction increases fat taste sensitivity in people with obesity. Obesity 2016, 24, 328–334. [Google Scholar] [CrossRef] [Green Version]
- Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutr. Res. Rev. 2010, 23, 270–299. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Wang, F.; Yuan, J.; Li, J.; Jiang, D.; Zhang, J.; Huang, T.; Zheng, J.; Mann, J.; Li, D. Effects of Macronutrient Distribution on Weight and Related Cardiometabolic Profile in Healthy Non-Obese Chinese: A 6-month, Randomized Controlled-Feeding Trial. EBioMedicine 2017, 22, 200–207. [Google Scholar] [CrossRef] [Green Version]
- Vermeulen, S.; Wellesley, L.; Airey, S.; Singh, S.; Agustina, R.; Izwardy, D.; Saminarsih, D. Healthy Diets from Sustainable Production: Indonesia; Chatham House: London, UK; Indonesian Ministry of Health: Jakarta, Indonesia, 2019; p. 47.
- Shan, R.; Duan, W.; Liu, L.; Qi, J.; Gao, J.; Zhang, Y.; Du, S.; Han, T.; Pang, X.; Sun, C.; et al. Low-Carbohydrate, High-Protein, High-Fat Diets Rich in Livestock, Poultry and Their Products Predict Impending Risk of Type 2 Diabetes in Chinese Individuals that Exceed Their Calculated Caloric Requirement. Nutrients 2018, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Wallingford, J.C.; Yuhas, R.; Du, S.; Zhai, F.; Popkin, B.M. Fatty acids in Chinese edible oils: Value of direct analysis as a basis for labeling. Food Nutr. Bull. 2004, 25, 330–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trico, D.; Di Sessa, A.; Caprio, S.; Chalasani, N.; Liu, W.; Liang, T.; Graf, J.; Herzog, R.I.; Johnson, C.D.; Umano, G.R.; et al. Oxidized Derivatives of Linoleic Acid in Pediatric Metabolic Syndrome: Is Their Pathogenic Role Modulated by the Genetic Background and the Gut Microbiota? Antioxid. Redox Signal. 2019, 30, 241–250. [Google Scholar] [CrossRef]
- Zhou, Y.; Du, S.; Su, C.; Zhang, B.; Wang, H.; Popkin, B.M. The food retail revolution in China and its association with diet and health. Food Policy 2015, 55, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, H.; Howard Annie, G.; Adair Linda, S.; Popkin Barry, M.; Su, C.; Du, W.; Zhang, B.; Gordon-Larsen, P. Six-Year Incidence of Cardiometabolic Risk Factors in a Population-Based Cohort of Chinese Adults Followed From 2009 to 2015. J. Am. Heart Assoc. 2019, 8, e011368. [Google Scholar] [CrossRef]
- Gibson, R.S. Principles of Nutritional Assessment, 2nd ed.; Oxford University Press: New York, NY, USA, 2005. [Google Scholar]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Arab, L.; Baer, D.J.; Kipnis, V.; Midthune, D.; Moshfegh, A.J.; Neuhouser, M.L.; Prentice, R.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for energy and protein intake. Am. J. Epidemiol. 2014, 180, 172–188. [Google Scholar] [CrossRef] [Green Version]
- Freedman, L.S.; Commins, J.M.; Moler, J.E.; Willett, W.; Tinker, L.F.; Subar, A.F.; Spiegelman, D.; Rhodes, D.; Potischman, N.; Neuhouser, M.L.; et al. Pooled results from 5 validation studies of dietary self-report instruments using recovery biomarkers for potassium and sodium intake. Am. J. Epidemiol. 2015, 181, 473–487. [Google Scholar] [CrossRef] [Green Version]
- Austin, G.L.; Ogden, L.G.; Hill, J.O. Trends in carbohydrate, fat, and protein intakes and association with energy intake in normal-weight, overweight, and obese individuals: 1971–2006. Am. J. Clin. Nutr. 2011, 93, 836–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
1991 | 2000 | 2011 | 2015 | p Trend | ||
---|---|---|---|---|---|---|
n | Total | 6712 | 7258 | 8692 | 9338 | |
n (%) | Men | 3139 (46.8) | 3448 (47.5) | 4011 (46.1) | 4210 (45.1) | |
n (%) | Women | 3573 (53.2) | 3810 (52.5) | 4681 (53.9) | 5128 (54.9) | |
Age (years) 1 | Average | 37.6 (10.9) | 40.5 (10.4) | 44.2 (10.5) | 44.4 (10.1) | <0.001 |
Men | 37.8 (10.9) | 40.5 (10.6) | 44.4 (10.5) | 44.8 (10.0) | <0.001 | |
Women | 37.5 (10.9) | 40.5 (10.2) | 44.0 (10.6) | 44.1 (10.1) | <0.001 | |
Urban residents (%) | Average | 32.1 | 29.0 | 41.8 | 37.0 | <0.001 |
Men | 31.5 | 28.5 | 41.5 | 36.7 | <0.001 | |
Women | 32.5 | 29.4 | 42.0 | 37.3 | <0.001 | |
Education ≥ high school (%) | Average | 17.4 | 20.0 | 38.8 | 41.1 | <0.001 |
Men | 21.0 | 24.4 | 41.9 | 45.0 | <0.001 | |
Women | 14.3 | 15.9 | 36.1 | 37.9 | <0.001 | |
Income (1000 yuan) 1,2 | Average | 3.3 (2.4) | 6.2 (6.2) | 17.3 (18.6) | 23.7 (38.6) | <0.001 |
Men | 3.3 (2.5) | 6.2 (6.2) | 17.9 (19.7) | 24.3 (39.7) | <0.001 | |
Women | 3.3 (2.4) | 6.2 (6.2) | 16.8 (17.7) | 23.2 (37.7) | <0.001 | |
Smoker (%) | Average | 35.5 | 32.1 | 30.0 | 26.3 | <0.001 |
Men | 71.8 | 63.8 | 62.6 | 56.5 | <0.001 | |
Women | 3.5 | 3.5 | 2.1 | 1.4 | <0.001 | |
Drinker (%) | Average | 38.8 | 35.7 | 36.6 | 29.9 | <0.001 |
Men | 68.1 | 64.7 | 64.6 | 57.4 | <0.001 | |
Women | 13.0 | 9.4 | 12.7 | 7.3 | <0.001 | |
Physical activities (MET hrs./wk.) 1,3 | Average | 62.3 (37.6) | 41.5 (30.7) | 27.9 (26.8) | 21.7 (24.1) | <0.001 |
Men | 57.2 (34.8) | 39.7 (29.6) | 27.9 (26.8) | 22.3 (25.3) | <0.001 | |
Women | 66.7 (39.3) | 43.2 (31.5) | 28.0 (26.9) | 21.3 (23.0) | <0.001 |
1991 | 2000 | 2011 | 2015 | p Trend | ||
---|---|---|---|---|---|---|
Energy intake (kcal/d) | Average | 2712.2 (708.3) | 2409.6 (684.1) | 2005.9 (660.7) | 2003.1 (671.3) | <0.001 |
Men | 2916.9 (722.1) | 2605.2 (688.2) | 2196.9 (686.2) | 2186.4 (706.0) | <0.001 | |
Women | 2532.4 (644.5) | 2232.6 (630.1) | 1842.3 (590.9) | 1852.6 (601.0) | <0.001 | |
Fat intake (g/d) | Average | 67.4 (36.4) | 78.2 (38.3) | 77.5 (33.7) | 78.3 (36.9) | <0.001 |
Men | 71.5 (37.9) | 82.9 (39.5) | 83.0 (35.2) | 83.9 (37.8) | <0.001 | |
Women | 63.9 (34.8) | 73.9 (36.7) | 72.7 (31.7) | 73.7 (35.6) | <0.001 | |
% fat intake from edible oil | Average | 50.5 (22.9) | 52.9 (23.0) | 44.8 (21.2) | 43.0 (22.9) | <0.001 |
Men | 48.9 (22.9) | 51.8 (23.0) | 43.5 (20.8) | 41.7 (22.8) | <0.001 | |
Women | 52.0 (22.7) | 53.9 (23.0) | 45.9 (21.4) | 44.0 (22.8) | <0.001 | |
% energy intake from fat | Average | 22.4 (10.0) | 28.9 (10.4) | 35.1 (10.9) | 35.3 (11.4) | <0.001 |
Men | 22.1 (9.9) | 28.3 (10.3) | 34.4 (10.8) | 34.8 (11.2) | <0.001 | |
Women | 22.7 (10.0) | 29.4 (10.5) | 35.7 (10.9) | 35.7 (11.6) | <0.001 | |
% energy intake from edible oil | Average | 11.1 (7.0) | 15.1 (8.6) | 16.0 (9.9) | 15.6 (10.7) | <0.001 |
Men | 10.6 (6.9) | 14.5 (8.3) | 15.2 (9.4) | 14.9 (10.4) | <0.001 | |
Women | 11.6 (7.2) | 15.6 (8.7) | 16.7 (10.1) | 16.2 (10.9) | <0.001 | |
High-fat diet (%) 2,3 | Average | 22.4 | 44.2 | 67.0 | 67.2 | <0.001 |
Men | 20.8 | 42.3 | 64.3 | 65.8 | <0.001 | |
Women | 23.8 | 45.9 | 69.4 | 68.5 | <0.001 | |
Height (cm) | Average | 160.0 (8.1) | 161.3 (8.1) | 162.6 (8.4) | 162.4 (8.2) | <0.001 |
Men | 165.7 (6.3) | 167.0 (6.3) | 168.7 (6.6) | 168.3 (6.6) | <0.001 | |
Women | 154.9 (5.8) | 156.1 (5.8) | 157.5 (6.0) | 157.5 (5.8) | <0.001 | |
Weight (kg) | Average | 55.8 (9.0) | 59.7 (10.3) | 63.3 (11.8) | 63.7 (11.8) | <0.001 |
Men | 59.2 (8.6) | 63.8 (10.3) | 68.6 (11.6) | 69.3 (11.8) | <0.001 | |
Women | 52.8 (8.2) | 56.1 (8.9) | 58.8 (9.9) | 59.1 (9.7) | <0.001 | |
BMI (kg/m2) 4 | Average | 21.7 (2.8) | 22.9 (3.1) | 23.9 (3.6) | 24.1 (3.7) | <0.001 |
Men | 21.5 (2.5) | 22.8 (3.0) | 24.0 (3.4) | 24.4 (3.6) | <0.001 | |
Women | 22.0 (2.9) | 23.0 (3.2) | 23.7 (3.7) | 23.8 (3.7) | <0.001 | |
Overweight (BMI ≥ 25.0–29.9) 2 | Average | 11.2 | 21.2 | 28.7 | 31.2 | <0.001 |
Men | 9.0 | 20.3 | 31.2 | 35.8 | <0.001 | |
Women | 13.2 | 22.0 | 26.5 | 27.5 | <0.001 | |
Obesity (BMI ≥ 30.0) 2 | Average | 1.1 | 2.3 | 5.2 | 6.0 | <0.001 |
Men | 0.6 | 2.0 | 4.9 | 6.1 | <0.001 | |
Women | 1.5 | 2.6 | 5.5 | 6.0 | <0.001 | |
Overweight and obesity 2 | Average | 12.3 | 23.5 | 33.9 | 37.3 | <0.001 |
Men | 9.7 | 22.4 | 36.1 | 41.9 | <0.001 | |
Women | 14.7 | 24.5 | 32.0 | 33.5 | <0.001 |
Model 1: Fat Intake (10 g/d Increase) 2 | ||||||
Weight (kg) 3 | BMI (kg/m2) | |||||
Coefficient | 95% CI 4 | p value | Coefficient | 95% CI | p value | |
Average | 0.030 | 0.018–0.041 | <0.0001 | 0.011 | 0.007–0.016 | <0.0001 |
Men | 0.023 | 0.006–0.041 | 0.0080 | 0.009 | 0.003–0.015 | 0.0050 |
Women | 0.033 | 0.018–0.049 | <0.0001 | 0.014 | 0.007–0.020 | <0.0001 |
Model 2: % energy intake from fat (10% per day increase) | ||||||
Weight (kg) 3 | BMI (kg/m2) | |||||
Coefficient | 95% CI | p value | Coefficient | 95% CI | p value | |
Average | 0.092 | 0.051–0.133 | <0.0001 | 0.038 | 0.022–0.054 | <0.0001 |
Men | 0.092 | 0.027–0.157 | 0.0060 | 0.035 | 0.012–0.058 | 0.0030 |
Women | 0.098 | 0.045–0.150 | <0.0001 | 0.041 | 0.020–0.063 | <0.0001 |
Model 3: High-fat diet (energy intake from fat > 30%) 5 | ||||||
Overweight and obesity | RR 6 | 95% CI | p value | |||
Average | 1.13 | 1.04–1.23 | 0.003 | |||
Men | 1.14 | 1.01–1.29 | 0.032 | |||
Women | 1.13 | 1.01–1.26 | 0.031 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, H.; Zhang, B.; Popkin, B.M.; Du, S. Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends. Nutrients 2020, 12, 3272. https://doi.org/10.3390/nu12113272
Wang L, Wang H, Zhang B, Popkin BM, Du S. Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends. Nutrients. 2020; 12(11):3272. https://doi.org/10.3390/nu12113272
Chicago/Turabian StyleWang, Liang, Huijun Wang, Bing Zhang, Barry M. Popkin, and Shufa Du. 2020. "Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends" Nutrients 12, no. 11: 3272. https://doi.org/10.3390/nu12113272
APA StyleWang, L., Wang, H., Zhang, B., Popkin, B. M., & Du, S. (2020). Elevated Fat Intake Increases Body Weight and the Risk of Overweight and Obesity among Chinese Adults: 1991–2015 Trends. Nutrients, 12(11), 3272. https://doi.org/10.3390/nu12113272