Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment
<p>SEM image: (<b>A</b>) hBN; and (<b>B</b>) hBN-FA.</p> "> Figure 2
<p>EDX analysis of hBN nanoparticles.</p> "> Figure 3
<p>EDX analysis of the hBN-FA complex.</p> "> Figure 4
<p>UV-vis spectrum of hBN, FA and hBN-FA.</p> "> Figure 5
<p>Zeta potentials of hBN and the hBN-FA complex.</p> "> Figure 6
<p>FTIR spectra of hBN and hBN-FA.</p> "> Figure 7
<p>UV-vis spectra of MEM and BLA at the range of 200–800 nm: (<b>A</b>) MEM; (<b>B</b>) BLA.</p> "> Figure 8
<p>Drug release study for pH:5.0 and pH: 7.4.</p> "> Figure 9
<p>SHSY-5Y cells are differentiated into neuron-like cells by retinoic acid treatment: (<b>A</b>), negative control; and (<b>B</b>), 10 µM of all trans RA applications for 11 days.</p> "> Figure 10
<p>In vitro cytotoxicity of hBN and hBN-FA on human dermal fibroblast cells (HDFa) for 24 h. Symbol (*) represents a statistically significant difference compared to the negative control.</p> "> Figure 11
<p>Cytotoxicity of hBN-FA+BLA and hBN-FA+MEM (0–500 µg/mL) on differentiated SHSY-5Y cell lines for 24 h using MTT assay. Symbol (*) represents a statistically significant difference compared to the negative control.</p> "> Figure 12
<p>Hoechst 33258 fluorescent staining of differentiated SHSY-5Y cell lines against 25 µg/mL concentration of hBN-FA+BLA, hBN-FA+MEM and hBN-FA applications for nuclear abnormalities for 24 h (20× magnifications): (<b>A</b>) hBN-FA+BLA; (<b>B</b>) hBN-FA+MEM; (<b>C</b>) only β-amyloid (<b>D</b>) hBN-FA.</p> "> Figure 13
<p>Cell viability tests (MTT and LDH assays) hBN-FA, hBN-FA+BLA, hBN-FA+MEM and β-amyloid (50 µg/mL and 25 µg/mL) on the experimental AD model for 24 h. Symbol (*) represents significantly increased cell viability (<span class="html-italic">p</span> < 0.0001) compared to only beta-amyloid applied groups.</p> "> Figure 14
<p>Flow cytometry analysis (annexin V- (FL1-H) and PI- (FL2-H) labeled cells) of hBN-FA+BLA, hBN-FA+MEM, hBN (25 µg/mL) against beta-amyloid cytotoxicity: (<b>A</b>) negative control; (<b>B</b>) hBN-FA+BLA; (<b>C</b>) hBN-FA+MEM; (<b>D</b>) hBN-FA; (<b>E</b>) only β-amyloid. Statistical analysis was performed using a one-way ANOVA followed by Tukey’s post hoc test.</p> "> Figure 15
<p>The effects of hBN-FA+BLA, hBN-FA+MEM, and hBN (25µg/mL) applications on Aβ1-42-induced AChE activity. (Each superscript letter (<sup>a, b, c</sup>) represents statistically similar groups).</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of hBN-FA Nano Conjugates
4.2. Characterization
4.3. Human Dermal Fibroblast (HDFa) Cell Culture
4.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium Bromide (MTT) Assay
4.5. Drug Loading and Release
4.6. SHSY-5Y Cell Culture and In Vitro Alzheimer Disease (AD) Model
4.7. Efficiency of the Drug Delivery System on In Vitro AD Model
4.8. Cell Viability Assay
4.9. Flow Cytometry Analyses
4.10. Acetylcholinesterase (AChE) Activity
4.11. TAC and TOS Analysis
4.12. Hoechst 33258 Staining
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karthivashan, G.; Ganesan, P.; Park, S.-Y.; Kim, J.-S.; Choi, D.-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv. 2018, 25, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.; Budson, A. Current understanding of Alzheimer’s disease diagnosis and treatment. F1000Research 2018, 7, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaz, M.; Silvestre, S. Alzheimer’s disease: Recent treatment strategies. Eur. J. Pharmacol. 2020, 887, 173554. [Google Scholar] [CrossRef] [PubMed]
- Adnet, T.; Groo, A.-C.; Picard, C.; Davis, A.; Corvaisier, S.; Since, M.; Bounoure, F.; Rochais, C.; Le Pluart, L.; Dallemagne, P.; et al. Pharmacotechnical Development of a Nasal Drug Delivery Composite Nanosystem Intended for Alzheimer’s Disease Treatment. Pharmaceutics 2020, 12, 251. [Google Scholar] [CrossRef] [Green Version]
- Pardridge, W.M. Treatment of Alzheimer’s Disease and Blood–Brain Barrier Drug Delivery. Pharmaceuticals 2020, 13, 394. [Google Scholar] [CrossRef] [PubMed]
- Chao, X.; Zhao, L.; Ma, N.; Mou, Y.; Zhang, P. Nanotechnology-based drug delivery systems for the improved sensitization of tamoxifen. J. Drug Deliv. Sci. Technol. 2021, 61, 102229. [Google Scholar] [CrossRef]
- Suri, S.S.; Fenniri, H.; Singh, B. Nanotechnology-based drug delivery systems. J. Occup. Med. Toxicol. 2007, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Geyikoğlu, F.; Açıkyıldız, M.; Tatar, A. Microarray assisted toxicological investigations of boron carbide nanoparticles on human primary alveolar epithelial cells. Chem. Biol. Interact. 2019, 300, 131–137. [Google Scholar] [CrossRef]
- Turkez, H.; Arslan, M.E.; Tatar, A.; Mardinoglu, A. Promising potential of boron compounds against Glioblastoma: In Vitro antioxidant, anti-inflammatory and anticancer studies. Neurochem. Int. 2021, 149, 105137. [Google Scholar] [CrossRef]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Tatar, A.; Açikyildiz, M.; Geyikoğlu, F. Toxicogenomic responses of human alveolar epithelial cells to tungsten boride nanoparticles. Chem. Biol. Interact. 2017, 273, 257–265. [Google Scholar] [CrossRef]
- Turkez, H.; Cacciatore, I.; Arslan, M.E.; Fornasari, E.; Marinelli, L.; Di Stefano, A.; Mardinoglu, A. Histidyl-Proline Diketopiperazine Isomers as Multipotent Anti-Alzheimer Drug Candidates. Biomolecules 2020, 10, 737. [Google Scholar] [CrossRef]
- Enes, M.; Erzurum, A. Ameliorative effect of boric acid against nicotine-induced cytotoxicity on cultured human primary alveolar epithelial cells. J. Boron 2016, 1, 104–109. [Google Scholar]
- Emanet, M.; Şen, Ö.; Çulha, M. Evaluation of boron nitride nanotubes and hexagonal boron nitrides as nanocarriers for cancer drugs. Nanomedicine 2017, 12, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Wang, F.; Cao, L.; Kong, C.Y.; Huang, X. Hexagonal Boron Nitride Nanomaterials: Advances Towards Bioapplications. Nanosci. Nanotechnol. Lett. 2012, 4, 949–961. [Google Scholar] [CrossRef]
- Sharker, S.M. Hexagonal Boron Nitrides (White Graphene): A Promising Method for Cancer Drug Delivery. Int. J. Nanomed. 2019, 14, 9983–9993. [Google Scholar] [CrossRef] [Green Version]
- Küçükdoğru, R.; Türkez, H.; Arslan, M.E.; Tozlu, Ö.Ö.; Sönmez, E.; Mardinoğlu, A.; Cacciatore, I.; Di Stefano, A. Neuroprotective effects of boron nitride nanoparticles in the experimental Parkinson’s disease model against MPP+ induced apoptosis. Metab. Brain Dis. 2020, 35, 947–957. [Google Scholar] [CrossRef]
- Sharker, S.M.; Alam, M.A.; Shill, M.C.; Rahman, G.M.S.; Reza, H.M. Functionalized hBN as targeted photothermal chemotherapy for complete eradication of cancer cells. Int. J. Pharm. 2017, 534, 206–212. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, B.; Wang, X.; Hanagata, N.; Li, X.; Liu, D.; Wang, X.; Jiang, X.; Bando, Y.; Golberg, D. Highly Water-Soluble, Porous, and Biocompatible Boron Nitrides for Anticancer Drug Delivery. ACS Nano 2014, 8, 6123–6130. [Google Scholar] [CrossRef] [PubMed]
- Sukhorukova, I.V.; Zhitnyak, I.Y.; Kovalskii, A.M.; Matveev, A.T.; Lebedev, O.I.; Li, X.; Gloushankova, N.A.; Golberg, D.; Shtansky, D.V. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems. ACS Appl. Mater. Interfaces 2015, 7, 17217–17225. [Google Scholar] [CrossRef]
- Qu, W.; Meng, B.; Yu, Y.; Wang, S. Folic acid-conjugated mesoporous silica nanoparticles for enhanced therapeutic efficacy of topotecan in retina cancers. Int. J. Nanomed. 2018, 13, 4379–4389. [Google Scholar] [CrossRef] [Green Version]
- Kunjiappan, S.; Pavadai, P.; Vellaichamy, S.; Ram Kumar Pandian, S.; Ravishankar, V.; Palanisamy, P.; Govindaraj, S.; Srinivasan, G.; Premanand, A.; Sankaranarayanan, M.; et al. Surface receptor-mediated targeted drug delivery systems for enhanced cancer treatment: A state-of-the-art review. Drug Dev. Res. 2021, 82, 309–340. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Hitzky, E.; Darder, M.; Aranda, P.; Ariga, K. Advances in Biomimetic and Nanostructured Biohybrid Materials. Adv. Mater. 2010, 22, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171–1178. [Google Scholar] [CrossRef]
- Boal, A.K.; Ilhan, F.; DeRouchey, J.E.; Thurn-Albrecht, T.; Russell, T.P.; Rotello, V.M. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 2000, 404, 746–748. [Google Scholar] [CrossRef] [PubMed]
- Cui, W.; Li, J.; Decher, G. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery. Adv. Mater. 2016, 28, 1302–1311. [Google Scholar] [CrossRef]
- Whitesides, G.M.; Mathias, J.P.; Seto, C.T. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science 1991, 254, 1312–1319. [Google Scholar] [CrossRef]
- Kolay, S.; Bain, D.; Maity, S.; Devi, A.; Patra, A.; Antoine, R. Self-Assembled Metal Nanoclusters: Driving Forces and Structural Correlation with Optical Properties. Nanomaterials 2022, 12, 544. [Google Scholar] [CrossRef]
- Koutsopoulos, S. Molecular fabrications of smart nanobiomaterials and applications in personalized medicine. Adv. Drug Deliv. Rev. 2012, 64, 1459–1476. [Google Scholar] [CrossRef]
- Michiue, H.; Kitamatsu, M.; Fukunaga, A.; Tsuboi, N.; Fujimura, A.; Matsushita, H.; Igawa, K.; Kasai, T.; Kondo, N.; Matsui, H.; et al. Self-assembling A6K peptide nanotubes as a mercaptoundecahydrododecaborate (BSH) delivery system for boron neutron capture therapy (BNCT). J. Control. Release 2021, 330, 788–796. [Google Scholar] [CrossRef]
- Yoneoka, S.; Park, K.C.; Nakagawa, Y.; Ebara, M.; Tsukahara, T. Synthesis and evaluation of thermoresponsive boron-containing poly(N-isopropylacrylamide) diblock copolymers for self-assembling nanomicellar boron carriers. Polymers 2019, 11, 42. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Hou, Y.; Xing, W.; Ma, C.; Zhou, X.; Liu, L.; Kan, Y.; Yuen, R.K.K.; Hu, Y. Self-assembled supermolecular aggregate supported on boron nitride nanoplatelets for flame retardant and friction application. Chem. Eng. J. 2018, 349, 223–234. [Google Scholar] [CrossRef]
- Vinothini, K.; Rajendran, N.K.; Ramu, A.; Elumalai, N.; Rajan, M. Folate receptor targeted delivery of paclitaxel to breast cancer cells via folic acid conjugated graphene oxide grafted methyl acrylate nanocarrier. Biomed. Pharmacother. 2019, 110, 906–917. [Google Scholar] [CrossRef]
- Zhang, H.; Feng, S.; Yan, T.; Huang, D.; Zhi, C.; Nakanishi, H.; Gao, X.-D. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug. Int. J. Nanomed. 2016, 11, 4573–4582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nasrollahzadeh, M.; Sajadi, S.M.; Sajjadi, M.; Issaabadi, Z. Applications of Nanotechnology in Daily Life. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2019; Volume 28, pp. 113–143. [Google Scholar]
- Drexler, K.E. The Coming Era of Nanotechnology. In The Materials Revolution. Superconductors, New Materials and the Japanese Challenge; MIT Press: Cambridge, MA, USA, 1988; pp. 361–373. [Google Scholar]
- Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.A. Introduction to nanotechnology and its applications to medicine. Surg. Neurol. 2004, 61, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Caruthers, S.D.; Wickline, S.A.; Lanza, G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007, 18, 26–30. [Google Scholar] [CrossRef]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Synthesis of hexagonal boron nitride films on silicon and sapphire substrates by low-pressure chemical vapor deposition. Thin Solid Films 2021, 733, 138812. [Google Scholar] [CrossRef]
- Chen, X.; Tan, C.; Liu, X.; Luan, K.; Guan, Y.; Liu, X.; Zhao, J.; Hou, L.; Gao, Y.; Chen, Z. Growth of hexagonal boron nitride films on silicon substrates by low-pressure chemical vapor deposition. J. Mater. Sci. Mater. Electron. 2021, 32, 3713–3719. [Google Scholar] [CrossRef]
- Hayat, A.; Sohail, M.; Hamdy, M.S.; Taha, T.A.; AlSalem, H.S.; Alenad, A.M.; Amin, M.A.; Shah, R.; Palamanit, A.; Khan, J.; et al. Fabrication, characteristics, and applications of boron nitride and their composite nanomaterials. Surf. Interfaces 2022, 29, 101725. [Google Scholar] [CrossRef]
- Yang, H.; Li, J.; Gu, S.; Wu, Z.; Luo, L.; Chen, Y. Fabrication of hexagonal boron carbonitride nanoplates using for in vitro photodynamic therapy and chemo therapy. Colloids Surf. B Biointerfaces 2022, 212, 112377. [Google Scholar] [CrossRef]
- Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy. Nanoscale Res. Lett. 2009, 4, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehghan Banadaki, M.; Aghaie, M.; Aghaie, H. Folic acid functionalized boron nitride oxide as targeted drug delivery system for fludarabine and cytarabine anticancer drugs: A DFT study. J. Mol. Liq. 2021, 339, 116753. [Google Scholar] [CrossRef]
- Guo, W.; Lee, R.J. Efficient gene delivery via non-covalent complexes of folic acid and polyethylenimine. J. Control. Release 2001, 77, 131–138. [Google Scholar] [CrossRef]
- Feng, S.; Zhang, H.; Zhi, C.; Gao, X.D.; Nakanishi, H. pH-responsive charge-reversal polymer-functionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int. J. Nanomed. 2018, 13, 641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, P.Y.; Yang, C.; Whilding, L.M.; Parente-Pereira, A.C.; Maher, J.; George, A.J.T.; Hedrick, J.L.; Yang, Y.Y.; Ghaem-Maghami, S. Ovarian Cancer Immunotherapy Using PD-L1 siRNA Targeted Delivery from Folic Acid-Functionalized Polyethylenimine: Strategies to Enhance T Cell Killing. Adv. Healthc. Mater. 2015, 4, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, M.; He, J.; Ni, P. Synthesis and characterization of a new multifunctional polymeric prodrug paclitaxel–polyphosphoester–folic acid for targeted drug delivery. Polym. Chem. 2013, 4, 4515–4525. [Google Scholar] [CrossRef]
- Talesa, V.N. Acetylcholinesterase in Alzheimer’s disease. Mech. Ageing Dev. 2001, 122, 1961–1969. [Google Scholar] [CrossRef]
- Lazarevic-Pasti, T.; Leskovac, A.; Momic, T.; Petrovic, S.; Vasic, V. Modulators of Acetylcholinesterase Activity: From Alzheimer’s Disease to Anti-Cancer Drugs. Curr. Med. Chem. 2017, 24, 3283–3309. [Google Scholar] [CrossRef]
- Saxena, M.; Dubey, R. Target Enzyme in Alzheimer’s Disease: Acetylcholinesterase Inhibitors. Curr. Top. Med. Chem. 2019, 19, 264–275. [Google Scholar] [CrossRef]
- Marucci, G.; Buccioni, M.; Ben, D.D.; Lambertucci, C.; Volpini, R.; Amenta, F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021, 190, 108352. [Google Scholar] [CrossRef]
- Subramaniam, S.R.; Chesselet, M.F. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog. Neurobiol. 2013, 106–107, 17–32. [Google Scholar] [CrossRef] [Green Version]
- Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020, 49, 102294. [Google Scholar] [CrossRef] [PubMed]
- Türkez, H.; Arslan, M.E.; Sönmez, E.; Açikyildiz, M.; Tatar, A.; Geyikoğlu, F. Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: Emphasis on toxicogenomics. Cytotechnology 2019, 71, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Turkez, H.; Arslan, M.E.; Yilmaz, A.; Doru, F.; Caglar, O.; Arslan, E.; Tatar, A.; Hacımuftuoglu, A.; Abd El-Aty, A.M.; Mardinoglu, A. In vitro transcriptome response to propolis in differentiated SH-SY5Y neurons. J. Food Biochem. 2021, 45, e13990. [Google Scholar] [CrossRef] [PubMed]
Formulations | Ratio | (%) Drug Loading |
---|---|---|
hBN+MEM | 1:2 | 84.3 |
hBN+MEM | 1:1 | 40.1 |
hBN-FA+Memantine | 1:2 | 95 |
hBN-FA+Memantine | 1:1 | 52.6 |
hBN+BLA | 1:2 | - |
hBN-BLA | 1:1 | - |
hBN-FA+BLA | 1:2 | 97.5 |
hBN-FA+BLA | 1:1 | 99.8 |
Cell Population (%) | ||||
---|---|---|---|---|
Group | G1 Phase | G2 Phase | S Phase | G2/G1 |
Control | 34.49 ± 1.72 | 16.22 ± 0.81 | 46.27 ± 1.31 | 3.02 ± 0.15 |
RA treated | 70.96 ± 3.54 * | 9.83 ± 0.61 * | 15.79 ± 0.78 * | 3.42 ± 0.18 * |
Nuclear Abnormalities (NA) | ||||
---|---|---|---|---|
Groups and Doses | Total MN | Total Lobbed | Total Notched | Mean NA/1000 Cells ± SD |
Negative Control | 4 | 3 | 4 | 0.011 ± 0.002 a |
hBN-FA+BLA (25 µg/mL) | 4 | 3 | 3 | 0.010 ± 0.004 a |
hBN-FA+BLA (50 µg/mL) | 3 | 3 | 4 | 0.010 ± 0.008 a |
hBN-FA+MEM (25 µg/mL) | 5 | 4 | 2 | 0.011 ± 0.007 a |
hBN-FA+MEM (50 µg/mL) | 4 | 5 | 3 | 0.012 ± 0.009 a |
hBN-FA (25 µg/mL) | 5 | 3 | 4 | 0.012±0.003 a |
hBN-FA (50 µg/mL) | 6 | 2 | 2 | 0.010 ± 0.003 a |
β-amyloid (25 µg/mL) | 5 | 6 | 4 | 0.015 ± 0.005 b |
β-amyloid (50 µg/mL) | 9 | 5 | 4 | 0.019 ± 0.001 c |
Experimental Groups | TAC (mmol Trolox Equiv./L) | TOS (µmol H2O2 Equiv./L) |
---|---|---|
Negative Control | 1.74 a | 0.38 c |
hBN-FA+BLA | 1.62 a | 0.44 c |
hBN-FA+MEM | 1.13 b | 0.87 d |
hBN-FA | 1.04 b | 0.54 c |
Only β-amyloid | 0.80 b | 0.89 d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yıldırım, Ö.Ç.; Arslan, M.E.; Öner, S.; Cacciatore, I.; Di Stefano, A.; Mardinoglu, A.; Turkez, H. Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment. Int. J. Mol. Sci. 2022, 23, 8249. https://doi.org/10.3390/ijms23158249
Yıldırım ÖÇ, Arslan ME, Öner S, Cacciatore I, Di Stefano A, Mardinoglu A, Turkez H. Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment. International Journal of Molecular Sciences. 2022; 23(15):8249. https://doi.org/10.3390/ijms23158249
Chicago/Turabian StyleYıldırım, Özge Çağlar, Mehmet Enes Arslan, Sena Öner, Ivana Cacciatore, Antonio Di Stefano, Adil Mardinoglu, and Hasan Turkez. 2022. "Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment" International Journal of Molecular Sciences 23, no. 15: 8249. https://doi.org/10.3390/ijms23158249
APA StyleYıldırım, Ö. Ç., Arslan, M. E., Öner, S., Cacciatore, I., Di Stefano, A., Mardinoglu, A., & Turkez, H. (2022). Boron Nitride Nanoparticles Loaded with a Boron-Based Hybrid as a Promising Drug Carrier System for Alzheimer’s Disease Treatment. International Journal of Molecular Sciences, 23(15), 8249. https://doi.org/10.3390/ijms23158249