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Abstract

The paper establishes the Local Asymptotic Normality (LAN) property for general conditionally
heteroskedastic time series models of multiplicative form, ¢, = 0.(6¢)n;, where the volatility
0+(6) is a parametric function of {es, s < t}, and (1) is a standardized i.i.d. noise endowed
with a density fp,. In contrast with earlier results, the finite dimensional parameter 8, enters in
both the volatility and the density specifications. To deal with non-differentiable functions, we
introduce a conditional notion of the familiar quadratic mean differentiability condition which
takes into account parameter variation in both the volatility and the errors density. Our results
are illustrated on two particular models: the APARCH with Asymmetric Student-¢ distribution,
and the Beta-t-GARCH model.
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1 Introduction

Local Asymptotic Normality (LAN) is a crucial property for comparing the asymptotic perfor-
mance of statistical procedures in parametric or semi-parametric models (parameterized by finite-
dimensional and infinite-dimensional nuisance parameters). For independent and identically dis-
tributed (iid) data, a comprehensive account on the LAN theory can be found in the books by van
der Vaart (1998), and Lehmann and Romano (2006). Swensen (1985) established the LAN property
for finite-order AR models with a regression trend. The proof of the LAN property for ARMA
models is due to Kreiss (1987), while Koul and Schick (1995) considered random coefficients AR
models. LAN results for a large class of time series models, in particular models with time-varying
location and scale, were obtained by Drost, Klaassen and Werker (1997). The LAN property was
also established for long-memory time series models, see Hallin, Taniguchi, Serroukh and Choy
(1999).

In GARCH models ¢, = 0,(6¢)n;, where the volatility o4(6¢) belongs to the o-field generated by
the past of €; and (1) is an iid zero-mean and unit-variance sequence, the most popular estimation
method for the parameter 6 is the QMLE (Quasi-Maximum Likelihood Estimation) which uses a
criterion based on a Gaussian density f for n,. For standard GARCH, the asymptotic properties
of the QMLE were derived under mild regularity conditions by Berkes, Horvath and Kokoszka
(2003), and by Francq and Zakoian (2004). When the distribution of 7; is not normal, the QMLE
may not be efficient (in the minimax sense or in in various other senses; see van der Vaart (1998)).
Efficient estimators of (some components of) 8y can be obtained, when f is unknown, via an adaptive
estimation procedure. This problem was studied, among others, by Linton (1993), Jeganatan (1995),
Drost and Klaassen (1997) who proved the LAN property for ARCH models, and Lee and Taniguchi
(2005) who considered the inclusion of a stochastic mean and dealt with initial values in the DGP.

The results established in the aforementioned articles hold under the assumption that the errors
density f is a nuisance parameter. Recent references on GARCH-type and score-driven volatility
models underlined the interest of parametrizing the errors density. This can be done, by letting this
density depend on a finite-dimensional parameter v, hence f(-) = f(-; 1), which is independent of
the volatility parameter 8y. The LAN property was established in this context, for ARMA-GARCH
models, by Ling and McAleer (2003). In other formulations, the density parameter enters directly

as a parameter of the volatility dynamics. This is the case of the score-driven volatility models



introduced by Creal, Koopman and Lucas (2008) and Harvey and Chakravarty (2008). To our
knowledge, no LAN result exists for handling such volatility models.

The aim of the present contribution is to establish the LAN property under mild conditions in
a fully parametric framework of general GARCH time series models, where the finite dimensional
parameter Oy enters in both the volatility and the density specifications. We first consider the
case where both the volatility and the errors density are smooth functions. In the usual setting
(without volatility), it is known that such smoothness assumptions can be replaced by the concept
of Quadratic Mean Differentiability (see e.g. van der Vaart (1998)). We introduce a related con-
cept, called Conditional Quadratic Mean Differentiability (CQMD), which expands, around the true
parameter value, the conditional density rather than the density of the observations.

The plan of the paper is as follows. In Section 2, we present our assumptions on the GARCH-
type model and provide our main results on the LAN property. In Section 3, we use the LAN
property to derive local asymptotic powers of tests. Examples are developed in Section 4. Most

proofs can be found in the appendix.

2 General GARCH model and LAN result

We consider general volatility model ¢, = 04(0¢)n; where (1) is iid* of density fg, with respect
to a sigma-finite measure u, and 6y belongs to a convex subset © of R%. Since we are going to
consider local properties of the model around 8¢, we will assume, without loss of generality, that ©
is bounded. Denote by 0 a generic element of ©. Let F; be the sigma-field generated by {n,,u < t}.

Our assumptions on the model are summarized in

A1(6¢): (e) satisfies ¢, = 04(80)n; where n; has density fg, and, for all @ € © C R?, {5,(0)} is a

stationary sequence with 04(0) € F1—1 and 0¢(0) > w > 0.

For 7 € R% let the sequence of local parameters 6,, = 8y + 7//n such that 8, € © for n
large enough. We denote by P, » (resp. P%) the distribution of the observations €1, ..., €, when the
parameter is 6,, (resp. 0g), i.e. under A1(8,) (resp. A1(6p)). Let the conditional log-likelihood

L A usual assumption is that that En; = 0 and En? = 1 but, in this fully parametric framework, we do not require

such moment assumptions.
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In many models, both the density and the volatility are smooth functions. We start by deriving
LAN results in this situation, for which more explicit conditions can be provided.
2.1 LAN property under differentiability

Assume the following regularity conditions.

A2: Forall 8 € ©, y — fg(y) admits continuous second-order derivatives. For all t > 1, 8 — 04(0)
admits continuous second-order derivatives. For all y € R, 8 — fg(y) admits continuous

second-order derivatives.

We also need to introduce the notations

w) =1y, Foty) = BT gy = 20D ) = TN Toly)
where prime denotes derivative with respect to y. Assuming
A3: Eg3 () < 0, E||fo,(n)|* < o0 and B[| TR 2 < o0,
let
IJ=1;J-Qf - fQT + F, (2.1)

with 1 = Eg} (n), J = p2sgoldlsniOo) o — poleall g — pf, (5,)f4,(m), and
f :Egeo(nt)feo(nt)'

Finally, we assume that

A4: there exists a neighbourhood V' (6g) of 6y such that

€t
F <oo, FE sup ()
‘ o (Ut >H eV (80) To ot(6)

and three pairs of conjugate numbers p; > 1, ¢; > 1, 1/p; +1/q; = 1, for i = 1,2, 3, such that

i (@) o)

2
E sup < 00,

0V (0o)

a
< 00,

p1
E sup
0V (6p)

<oo, FE sup
0V (0p)

‘62 log O't(e)
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b2 1 2q2
2 s ge< € ) coo. E sup ’3054%@ < 00,
6cV(8o) o¢(6) 0V (00) 90
and
p3 1 q3
E sup gg< ct ) <oo, FE sup ‘6052;075(0) < 00.
6eV(8o) o4(0) 0V (60) 90

Let the central sequence

A, = \/15; {feo(ﬁt) - ggo(nt)abg;;(%} .

Note that the term fq (77;) vanishes when, as in Drost and Klaassen (1997), Drost, Klaassen and
Werker (1997) or Lee and Taniguchi (2005), the density f of 1 does not depend on 6.

Our first result is the following.

Proposition 2.1. Let © be a bounded conver subset of R? such that 8y € ©. Assume A1(6g) and
A2-A4. When 6,, = 0y + 1/+/n € O for n large enough, we have the LAN property

1 1
A (00 + 7/v/n,00) = A, — §TT3T +op,(1) BNV <—2TT3T,TT3T> under Py.

Note that in the particular case where the density f is a nuisance parameter (i.e. independent

of By), we retrieve the usual expansion with J = ¢J.

2.2 LAN property under CQMD

Assumption A2 is standard and is sufficient for most applications, but it can be replaced by the

following CQMD condition.

A2*: For all t € Z, there exists a vector s;g,(y) = 8o, (Y, Ni—1,Mt—2,...) € RY where sg, is a

measurable function, such that

ot(6o) a¢(6o) 1
¢%mewhﬁth%jhg):wnaw+2n%wﬁw fonlw) + ), (22)

with

lrenOBegy = [ 2ulldnt) = on(1B7) a5 b 0.

Note that when f is not parametrized by 8y, it is enough to suppose QMD for /f as in Drost,
Klaassen and Werker (1997). Note also that under A2-A4, a Taylor expansion and tedious com-
putations show that (2.2) holds with

) o+(69) at(6o)

) dlog a:(0))
St,0¢ (y) ~ Oh 08 Ut(OO + h) f90+h (Ut(eO + h) y)

o Foo(y) = 900() 55— (2:3)
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In the sequel we no longer assume A2 but, instead, assume the CQMD condition A2*. We have

the following lemma.

Lemma 2.1. Under A1(60y) and A2*
E(si0,(n)|Fi—1) =0 and J;:= E(Stﬂo(nt)SZOO(Ut”]:t—l) erists, a.s. (2.4)
Note that A2* entails that
Iren()lzzgo < 2+ 5 (T 3eRY 72 25
Let the assumption

A3*: The following matrix exists

3= E(s1.0,(ne)si g, (m))-

Note that under (2.3), J coincides with the matrix in (2.1). It follows from (2.5) and A3* that
for any bounded sequence (h;), we have uniform integrability of the sequence (|[ryn, (-)l£2(u))n-

Therefore, using Theorem 3.5 of Billingsley (1999), we have

B [ rta@dn) = ofk?) a5 0. (2.6)

Our main result is the following.

Proposition 2.2. Proposition 2.1 remains valid when A2-A4 is replaced by A2*-A3* and the

central sequence is defined by A,, = n~1/2 Doty St ().

3 Testing linear hypotheses

In this section, we study how our LAN properties can be used to derive the local asymptotic powers

of tests. Consider testing an assumption of the form Hy : ROy = r where R is a full row rank p x d
o ~

matrix and r € RP. Assume that 8y belongs to the interior © of © and that, for an estimator 8,, of

0o, the following Bahadur expansion holds

\/ﬁ </én - 00) = \/15 tz; ‘I’t—lv(ﬁt) + OP()(l)?



where V(+) is a measurable function, V : R — R¥ for some positive integer k, and ¥, ; is a Fy_1-
measurable d x k matrix, (¥;) being stationary. We assume that the variables ¥; and V'(;) belong
to L2, EV(n;) =0, var{V ()} = Y is nonsingular and E¥; = A is full row rank.

When 6, = EnML is the Maximum Likelihood Estimator (MLE), the Bahadur expansion holds
under some regularity conditions, and we have

~ML )

\/ﬁ(an -0y = \}ﬁ;xlswo(m)ﬂpou). (3.1)

~ ~QML
When 6,, = BS is the QMLE, the Bahadur expansion also holds under some regularity conditions,

with

oML _ L N1 ,0lg0i(80) o
v (6, - 8,) = ﬁtzlff = 1) + oy (1), (3.2)

We wish to test Hy against the sequence of local alternatives H,, : 6, = 8y + 7//n, T € R?,
7 # 0. Assuming that the LAN property holds, under the conditions of either Propositions 2.1 or

2.2, we have, under H,

n (RO, —r Ly R®, ,V
Vi (BB, —r) ) _ FELREAVD )
An(6o + 7/+/n, 60) TTW > i1 St60 (M) — 5T IT
Consequently,
n Ran -r 0 RXR' ¢ T
f( ) i}j\f , 00.(7) , under Py,
A (0 + 7/+/n, 0g) —3r 73T Coo.1(T) T'3yT
where 3 = E(¥,YW¥/), g, s(T) = RE[®; 1 E; 1{V (111)s/ g, () }]T-
In the particular case where (2.3) holds, we thus have
dloga,(0
oy 5(7) = REQH BV (1)F3,(0))7 ~ RE W01 gy (1)V (1)) "5t )

Le Cam'’s third lemma and the contiguity of the probabilities Py and P, (a consequence of the

LAN property) entail that
Jn (R@n _ 7’) N (COO, f(T),RZRT) under H,,.

The Wald test, at asymptotic level a € (0, 1), is defined by the rejection region {W,, ; > Xf,(l —a)}

where x2(1 —a) is the (1 — a)-quantile of the chi-square distribution with p degrees of freedom and
~ T SnT-1 ~
Wit =n (Ren - r) (RSR"}™ (Ran _ 7') :
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where 3 is a consistent estimator of 3. This test has LAP 1 — - {x2(1 — @)} where ®, is the cdf

of a non-central chi-square distribution with p degrees of freedom and non-centrality parameter
T Ty—1
Ceo,f(T){RzR} Co,,1(T)-

The following proposition can be used to quantify the local asymptotic efficiency loss of the QMLE
with respect to the MLE for testing linear restrictions on parameters involved in the volatility

or/and the density of the innovations.

Proposition 3.1. Assume A1(0y), either A2-A4 or A2*-A3*, and (2.3). For the MLE satisfying
(3.1) and the QMLE satisfying (3.2), we have cq, f(T) = RT.

4 Examples

In this section we present two examples of popular GARCH specifications for which our LAN result
can be derived, under more explicit assumptions than in the general model. The first example
deals with a class of nonlinear GARCH models for which the smoothness assumptions required in
Proposition 2.1 are not satisfied. We will therefore rely on Proposition 2.2. The second example

illustrates a situation where the volatility and density have common parameters.

4.1 Application to APARCH(1,1) models with Student errors

The following generalized asymmetric Student-¢ distribution was proposed by Zhu and Galbraith
(2010)
v+l
2K (1) {1+}1(23*)2} : y <0,
foly) = e (4.1)
Loa (1) [1 + % (2(%(1)) ] .y >0,

where K(v) = \;57?(1;)) (where I'(+) is the Gamma function), a € (0,1) is the skewness pa-
rameter, vi,v5 > 0 are respectively the left and right tail parameters, and «* is defined as
o = aK(v)/laK(v1) + (1 — a)K(v2)]. This density is continuous (in y) and admits a finite
variance provided vy A vy > 2. See Zhu and Galbraith (2010) for a detailed study of this distribu-

tion, including the asymptotic properties of the ML estimator for iid observations.



Consider the class of APARCH (Asymmetric Power ARCH) models introduced by Ding, Granger
and Engle (1993), defined as

€t = o(00)nt, (4.2)
0‘?(0) = w+t O‘+’6t*1‘5]1€t71>0 + O‘*|6t*1|6]1€t71<0 + Baf—la

and assume that the density of 7; is given by (4.1) with parameters indexed by 0. Let
0= (w,aq,a_,B,8,a,v1,1n) €0 C [w,00) x [0,00)% x [0,1) x (0,00) x (0,1) x (0,00)%  (4.3)

Corollary 4.1 (APARCH with asymmetric Student innovation). The LAN property holds
for Model (4.1)-(4.2) if © satisfies (4.3) and

Elogag,(m) <0, where ag(z)= a+25]lz>o + oz_\z|5]lz<o + .

For this model, despite the lack of differentiability of the density function, the LAN property
holds under the strict stationarity condition. The following example shows that the strict station-

arity condition may not suffice for the LAN property to hold.

4.2 Application to the Beta-t-GARCH(1,1)

The class of the Beta-t--GARCH was studied by Harvey (2013) and Creal, Koopman and Lucas
(2013). Assume that the errors of the GARCH model follow a Student’s t distribution with v

degrees of freedom, that is

v+l —T2
oly) = —— F(z)(u S (14)
2

with v > 2, and assume that

(v+1e
(v —=2)+ €y /071(8)

07(8) = w + Bo;_1(8) +a (4.5)

where 6 = (w, a, B,v) belongs to the parameter space O, a subset of (w,00)? x [0,1) x (2,00) for
some w > 0. Note that the parameter v is involved in both the density and the volatility.

By the Cauchy root test, it can be easily seen that, at @ = 0, there exists a stationary and
ergodic solution to this model, explicitly given by ¢; = oyn with

(v+1)22

u—2—|—z2+ﬁ’

02 = 02(0p) = wo {1 + Zaoo(nt_l) - 'aeo("?t—i)} ., ag(z) =«
i=1
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when 6y is such that

Elogag,(n) < 0. (4.6)

The arguments of the proof of Lemma 2.3 in Berkes, Horvath and Kokoszka (2003) entail that under

(4.6) there exists s > 0, such that
Ele® < o0, Eo} < . (4.7)

Note also that 07(8) satisfies a Stochastic Recurrence Equation (SRE) of the form

(v +1)e?

2
V—2+62/02+6U'

07(0) = p(61,071(0),  @(e*,0°) =

According to the SRE theory (see Straumann and Mikosch, 2006) the model is invertible at 6, i.e.

02(0) can be written as a measurable function of {e,,u < t}, if

dp(ef,0?)

S <0, i) Elog™ |¢(ef, 05)| < o0
g

i) F'log sup
o2
for some o2 > 0. Condition i) is always satisfied and, since o7 > w/(1 — 3) condition i) holds if

Flog <a (vt 1)ef
{(v=2)w/(1-8)+ €}

Note that the constraint (4.8), which depends on 6 and 6y, can be tested using Monte Carlo

5 + B) < 0. (4.8)

simulations. We thus have seen that A1(6y) is satisfied under (4.6) and (4.8). Assumption A2

holds true without additional condition. Now, note that

v 2 0
- fo) = 3

go(y) =1 — —5——, : 7
)2ty 35 0 (441) — o (3) —log (14 325) — 25 )

where 9g(x) = log’ {I'(x)} is the digamma function. The first two moment conditions of A3 are
thus satisfied. The last condition is implied by Lemma F.1 in the appendix.
Now we turn to A4. We have

21, - v v ’ -
97 log fo(y) _ 1{@—12>2+¢1( ;1>‘¢1 (2)+(,,_2+Zz)(y_2)—@_yz:;a?}’

where 1, is the trigamma function. Note that this function is bounded. Thus the first moment

ov? 4

condition in A4 is satisfied. The second inequality is also satisfied using (4.7), the elementary

inequality log(1 + y) < K(1 + y*) for y > 0 and the lower bound for o¢(6). Moreover the function

10



ygp(y) being bounded, the third condition is satisfied for any p;. Similarly, the fifth and seventh
inequalities hold for any ps, p3. Thus A4 is satisfied provided, for some r > 0,

14+r
< 0. (4.9)

1+r
<oo, FE sup
0V (0p)

E sup

0cV(60) 00

‘Glog a.(0)

‘ 02 log o4(0)
00007

These moment conditions require an extension of Lemma F.1 which is discussed in Blasques, Koop-
man and Lucas (2014) trough the notion of moment preserving maps. We have shown the following

result.

Corollary 4.2 (Beta-t-GARCH). The LAN property holds for Model (4.4)-(4.5) with By # 0 if
(4.6), (4.8) and (4.9) are satisfied.

For the sake of illustration we consider testing the assumption Hy : v = 1 against H, : v =
vo + 7/+/n in Model (4.4)-(4.5) with wy = 0.5, a9 = 0.1, By = 0.88. The LAPs of the tests based on
the QMLE and MLE are displayed in Figure 1. By Proposition 3.1, these LAPs only differ by the
asymptotic variances 3 of the estimators, which were numerically obtained from simulations of size
n = 100, 000. As expected the discrepancy is large for small values of 1y and reduces as vy increases,

with a degeneracy of the two powers at v = oo since the parameter is no longer identifiable.

5 Conclusion

In this paper, we prove the LAN property for general conditionally heteroskedastic models where
the parameter of the errors density has common components with that of the volatility. A typical
example where this situation occurs is the case of some score-driven volatility models. Our assump-
tions on the volatility model are rather weak, in particular they are compatible with high persistence
introduced through ARCH(oo) models (see e.g. Robinson and Zaffaroni (2006), Royer (2021)). The
introduction of the notion of CQMD allows to handle situations where some regularity assumptions
on the volatility and/or the density functions are in failure. As examples of application of the LAN
property, we consider tests of linear restrictions. Using the LAN property, we are able to quantify
the asymptotic discrepancy in local power between the QML and ML estimators. An interesting
future area of research is the extension of the framework of this article to conditional location-scale

models, or more general score-driven models.
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Figure 1: LAPs of the tests of Hp : v = 1y based on QML (blue line) and ML (dotted red line), as functions

of 7, for the Beta-t-GARCH Model.
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APPENDIX

A Proof of Proposition 2.1

Note that

55198 { g0 (O | = g0 (0(0) ZEe ) 1 £ (o)

and

0?log o4(0) _ Ologoy(0) +
090007 oo 70

+ go (m(6)) m:(6) 310%?(9) 8105;(0)

085 () PETE g 3, (0)

(n:(0))

0? 1
90007 { (0)"° (”tw”} =~ 90 (m(9))

where fy(y) denotes the vector of the derivatives of the elements of fg(y). Note that yfy(y) =

go(y). A Taylor expansion of 8,, — A, (0., 0) around 6, thus yields
1
An(0n,00) = 7" Ay — o7 30 (07)7, (A1)

where 6} is between 6 and 0,,, and

- 1 = D?logai(0) 1 Jlogo(0) 0log o+(0)
In(0) s ;90 (n:(6)) W T ;99 (1:(6)) 7:(6) 00 907
alogo 8loga 0 1 &
vy Torsdd) 20 tnlo) PEED 15y 10)
t=1

00"
difference. By the central limit theorem of Billingsley (1961) we have A, LN N {0,J} under Py,

Note that under A1 and A3, {(ggo (nt)m, feo (nt))T,]-"t} is a square integrable martingale

as n — 0o. Moreover, integrations by parts show that

/ 2
vy = —Egp, (nt) e = =1+ /yzmd% Ege, (1) = =

For the last equality, we use the fact that 9 [ fo(y)ge(y)dy/00 = 0 because [ fo(y)ge(y)dy = 0 for
all 8. Note also that FF = —EFg,(n:). The ergodic theorem then entails that J,,(8¢) — J a.s. as
n — 0o.

It remains to establish that, as n — oo,
|3n(0;,) — Jn(00)| — 0 in probability. (A.2)
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We only give the proof of

LS Fo (63}~ S Foy ()| + 0 as (A.3)
t=1

t=1

The other convergences showing (A.2) are obtained similarly. By the ergodic theorem, (A.3) is
obtained by showing that for all € > 0, there exists a neighborhood V' (8y) of 8y such that

E sup |[|[Fg{m(0)} — Fo, (m)| <e.
0V (6p)

By the dominated convergence theorem, A2 and the first moment condition of A4, the left-hand
side of the previous inequality tends to 0 when the neighbourhood V' (60y) shrinks to the singleton
{600}, and (A.3) follows. The rest of the proof follows by the same arguments. O

B Proof of Lemma 2.1

The proof is adapted from the iid case (see for instance Lehmann and Romano (2006), Lemma

12.2.1). We start by showing the second result. Taking h = hT where h > 0, we get from A2*

lgn — gllz2(uy — 0 when h — 0

where g(y) = %TT.st(y) fo,(y) and

. 1 at(H ) at(O )
gn(y) = 7 {\/Q(GO—I—Oh'r)feoJrhT (WQ) - feo(y)} .

Since ||gnlz2(u) < o0, it follows that HgHQLz(M) =113 < .

Now taking, conditionally on F;_1, the squared L?(u)-norm of both sides of the equality (2.2),

we obtain
0 = {hTh+ [ W)dnl) + T Bl )l Fi)
42 [raViWidnw) + [ 17 si0,@VIaWrea@idaw) s
Noting that, by the Cauchy-Schwarz inequality, [7n(y)\/fo(y)du(y) = op,(|k|]) and

[ R st0,(v)\/ fo(y)ren(y)du(y) = op,(|h||?), and comparing the orders as h — 0, we deduce
the first equality in (2.4) (a well known result when A2 holds). m
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C Proof of Proposition 2.2

Letting

7 f00 (nt)
and using log(y + 1) =y — y?/2 + y?*¢(y) with &(y) — 0 as y — 0, we have

_ [o:(60) fo, (n:(6n)) _
th - \/O’t(e ) 1

n

An(gny 90) =2 Z log<Wt,n + 1) =2 Z Wt,n - Z Wt2,n +2 Z Wt%ng(Wt,n>'
t=1 =1 t=1

We will show that

2Z{th— (Wi | Fe1)} =7 Ay + 0py (1), (C.1)
2 i EWin | Fi1) = —%TTJT +op, (1), (C.2)
=
anwfn =7 37 +op (1), (C.3)
iWﬁnf(Wt,n) = op,(1). (C.4)
=

Under A1(6y) and the CQMD condition, it can be seen that (s;g,(7:)) is a stationary and ergodic
sequence. The conclusion will follow by noting that {s;g,(n:), F:} is a square integrable martingale
difference by (2.4) and A3*.

By A2*, we have
1% E(W ’J—-' ) 7- S0 (77 )+R R 7't,n—l/%-(nt‘) E 7' n-1/2+ ( ‘ 7
tn tn t—1 t t tns tn = ———— — _bn TTAT 1
Qf ° Too 1) Fow 0

Noting that (R:,) is a stationary martingale difference, we have

n 2
T,
ar (Z Rt,n) =nVar (R;,,) <nEE {tan(m)} | Fio1 | = nE/rinl/QT(y)d,u,(y) =o(1)

t=1 Joo (Tlt)

where the last equality follows from (2.6). Thus (C.1) follows.
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By A2* again, we have

o (0 o:(0
n n \/Uz((g:)) fﬂn (U:éez)) y)

;E(Wt,n | Fio1) = tzl / RO) — 1 foo (y) du(y)

_ _;zn:/ {\/2(32) fon <Z:Ez:))y> —/ fo, (y)}zdu(y)
:_Z/{2f7' 51.00(W)\/ foo(y )+rt,_r/\/5(y)}2du(y)

i 22 [ {7 ) )+ non il

and (C.2) follows from the ergodic theorem and A3*.
We also have
n n
1 127 7‘ 127 (1)
S = 3 (o) 3 LS )
t=1 f90 (nt)

f90 nt

By the ergodic theorem, the first term of the right-hand side of the equality tends almost surely to
%TT:jT The expectation of the second term terms is equal to nEfrtn 12y (y)dp(y) = o(1), and
thus this positive term tends to zero in probability. The third term also tends to zero in probability,
by the Cauchy-Schwarz inequality and the two previous convergence results. Therefore (C.3) is
shown.

For all € > 0 there exists 0 > 0 such that [{(y)| < e if |y| < J. Therefore we have

n n n
Z Wt2,n€<Wt,n) <e Z Wt2,n + Z Wt%nl\Wt,n|>5
t=1 t=1 t=1

1 o T 2 tn /24 (1)
<eOp(1)+ > <T 5,6 (Ut)) 7T 810, ()| >n1/26 T 42 " fo ()

using (C.3) and the elementary inequality (a + b)zl‘ﬁbbtg < 4a21‘a|>5/2 + 4b%. We have already
seen that the last sum is an op(1). Now, for all M > 0, when n is sufficiently large we have

1 & - 2 1 - 2

D (77 8100)) Vo gy rofomiizs < 2 (7 500000)) 1, i
and, by the ergodic theorem, A1(6y) and A3*, the right-hand side converges almost surely to
E (TTStﬂO (nt))2 L 7g, 0y (10)[>M> which is arbitrarily small when M is large. The conclusion follows.

a
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D Proof of Proposition 3.1
For the MLE, by (3.1) we find
eIl (1) = Coves (RrrlAn,rTAn) — Rr

and for the QMLE, by (3.2),

1 B Olog o:(0 Olog o4(6
cgi () =Cov <2RJ Y - 1)%5(0)’”00 () — 960 <m>TTgaet(O)>

:%RJ‘lﬂTTE(mQ —1)fo, () + %E [(1—n7)g0,(m)] R

Now we have

E(ni — 1)s.0,(m) =En;st.6,(n)
O‘t(eo) O‘t(ao)
—E/{L‘ 71 O't 00 +h)f00+h <Ut(00 +h)$>
o 2 8 ot(00) O't(OU)
_E/x Bk 0y(0y + )00+ <at(00+h)m> hzodx
0 2 Ut<00) Ut(oo)
_E 87h /m O't(00 + h) f90+h (O't(00 + h)x> dx
0 0y +h
=L %%/ffewh(y)dx
iaf(@o +h)
oh  02(6)

fo,(z)dx
h=0

h=0

h=0 o7 (8) 06
Moreover,

dlog a¢(69)

B = D)st.0,(m) = E(1 = 1)F o, () = (1} = 1)go, () E=—5 07—,

with

E(n; — 1)ge, () = /(:L‘2 —-1) <1 + 1:;;:&;) fo(z)dr =1+ /l'3fé(13)dl’ =-2.

It follows that

dlog a1(0o)

=20 -20=0.
00 0

E(m; —1)fo,(n) = 2Q + E(n} — 1)ga, (m)E
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E Proof of Corollary 4.1

Note that Elog™ ag,(n1) < oo because Elog™ |n| < co. It follows that, by the Cauchy rule

[ I
01 (B0) = wo + ag (1)o7, =wo | 1+ Y [ aeo(ne—j)
i=1 j=1

Therefore A1(6) reduces to Elogag,(m) < 0 and supg 5 < 1. For some 6, the function y — fo(y)
is differentiable only once at y = 0. Therefore A2 is not satisfied and the result cannot be obtained
from Proposition 2.1. We will show the CQMD of Proposition 2.2.

By Lemma 2.1 of Garel and Hallin (1995) (see also Lind and Roussas (1972)) multivariate QMD
is equivalent to partial QMD component by component. Note that a similar property does not hold
for the classical differentiability. Reasoning conditional to J;_1, establishing A2* is thus equivalent

to showing, for i =1,...,d,

2
% {\/(mfeﬁhei (%(Z(%Q - \/M— %he?swo(y) feo(y)} dy = op(1)

as h — 0, where e; is the i-th element of the canonical basis of R and 8t.0,(y) € Fi—1. We will

show the result with

St,0¢ (y) = f90 (y) — 9o, (y)mogg‘g(g())

By Proposition 2 in Zhu and Galbraith (2010), the information matrix F' = Efg (m)f;,ro (m) exists
and is continuous. Noting that gg(-) is bounded, vy = Egg(n;) and f = Ega,(n)fe,(n:) exist.

Moreover, they are continuous at 8¢. It follows that

dlog o4(0) 0log a¢(6o) _ dlog a4(6o)
00 00" 007

dlogoy(6o)
o0’

30 = B (st00(m)8 0, () | Fiot ) = 15 ;-5 +F

0¢(60) o¢(60) i
oo Favhe (e s

continuously differentiable, and thus absolutely continuous in a neighborhood of 0. By Theorem

exists and is continuous at 6y. Given F;_1, the application h —

12.2.1 in Lehmann and Romano (2006) (see also Theorem 1.117 in Liese and Miescke (2008)) the
result follows by the fact that e, J;e; exists and is continuous. Hamadeh and Zakoian (2011) showed
that 0log 0+(6p)/00 admits moments of any order (see their Equation 5.20). It follows that § = EJ;

exists, which shows A3* and completes the proof. O
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F Complement to the proof of Corollary 4.2

Lemma F.1. Under (4.6), when By # 0, the Beta-t-GARCH(1,1) satisfies

<00, forallr>0.

dlog 03(00) "
00

Proof. Letting a:(0) = ag(n:(0)), for all i > 1 we have

Uf(ﬂ)zw 1+ZHat,j( —I—O't i( Hat —j

Therefore

We also have

1
(zx—l—l)ef_l
62
952(0 (v=2)+ 5= do? (0
até - , +bt—1(9)taé( :
oi_1(0)
a2, _ a(v+1)e2_, .
_ 627
s (i)
with
a(v+1)e alv+ 1)nk6
b (0) = B+ ( 5 )6 vl ( )Zt()2<at(0) a.s
{(V_Q)Ut(9)+€t} {V_2+77t(0)}

Let a; = a4(0o) and by = by(0g). Note that there exist 0 < n <7 and p < 1 such that

by
az <pl n2elmm T 1 AUk

Therefore, letting 7 = P(n? € [,7]) € (0,1), we have

bi\" .
E(—) <pr+1-m<L
Gt
2
Moreover a; < By ! Thus alo%é(eo) admits moments at any order. The other derivatives can be
handled similarly. O
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