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Abstract

This paper proposes a new approach to identifying the effective cointegration

rank in high-dimensional unit-root (HDUR) time series from a prediction perspective

using reduced-rank regression. For a HDUR process xt ∈ RN and a stationary series

yt ∈ Rp of interest, our goal is to predict future values of yt using xt and lagged

values of yt. The proposed framework consists of a two-step estimation procedure.

First, the Principal Component Analysis is used to identify all cointegrating vectors

of xt. Second, the co-integrated stationary series are used as regressors, together

with some lagged variables of yt, to predict yt. The estimated reduced rank is

then defined as the effective coitegration rank of xt. Under the scenario that

the autoregressive coefficient matrices are sparse (or of low-rank), we apply the

Least Absolute Shrinkage and Selection Operator (or the reduced-rank techniques)

to estimate the autoregressive coefficients when the dimension involved is high.

Theoretical properties of the estimators are established under the assumptions that

the dimensions p and N and the sample size T → ∞. Both simulated and real

examples are used to illustrate the proposed framework, and the empirical application

suggests that the proposed procedure fares well in predicting stock returns.
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1 Introduction

The availability of large-scale or vast time-series data in recent years brings new challenges

and opportunities to time series modeling. Analysis of high-dimensional (HD) time series

has emerged as one of the important and active research areas in statistics, economics,

finance, and engineering, among other scientific fields. For example, returns of a large

number of assets form a HD time series and play an important role in asset pricing,

portfolio allocation, and risk management. Environmental studies often employ HD time

series consisting of a large number of pollution indexes collected from many monitoring

stations over time. In many applications, data often exhibit characteristics of unit-root

nonstationarity. For instance, the series of quarterly gross domestic products, total

exports, and total imports of an economy tend to contain unit roots. In theory, the vector

autoregressive moving-average (VARMA) models can be used to analyze such data, but they

often encounter the difficulties of cointegration testing, overparametrization, and lack of

identifiability. See, for example, Johansen (2002), Tiao and Tsay (1989), Lütkepohl (2006)

and Tsay (2014), and the references therein. To overcome these difficulties, dimension

reduction or structural regularization becomes a necessity, and various methods have

been developed in the literature including the regularized estimation method for HD

VAR models in Lin and Michailidis (2017) and the factor modeling by Stock and Watson

(2005), Bai and Ng (2002), Forni et al. (2005), Peña and Poncela (2006), Lam, Yao and

Bathia (2011), Lam and Yao (2012) and Gao and Tsay (2019, 2021b, 2021c, 2022), among

others. However, most of the studies mentioned above focus on stationary processes and

are not applicable to unit-root nonstationary series. The only exceptions are Bai (2004),

Peña and Poncela (2006) and Gao and Tsay (2021c). On the other hand, the unit-root

nonstationarity is commonly seen in many empirical applications and the complexity of

the dynamical dependence in such data requires further investigation.

It is well known that cointegration is often used to account for common trends and

to avoid non-invertibility induced by over-differencing unit-root time series. See Engle

and Granger (1987), Johansen (1988, 1991) and Tsay (2014), and the references therein.

In practice, the cointegration rank of a given vector time series is unknown, and many

approaches have been proposed to estimate the rank; see, for example, Engle and Granger

(1987), Johansen (1988, 1991), Saikkonen and Lütkepohl (2000) and Aznar and Salvador

(2002). However, these methods are rarely applied to HD time series due to their poor
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finite-sample performance, as discussed in Johansen (2002). Yet there are many real

applications that involve HD time series. For example, Banerjee, Marcellino and Masten

(2014) emphasized the importance of testing for no cross-sectional cointegration in panel

cointegration analysis, and the cross-sectional dimension of modern macroeconomic panel

can easily be as large as several hundreds. Recently, there are some studies on identifying

the cointegration rank of unit-root time series from a factor modeling perspective. See

Peña and Poncela (2006) for the case of fixed dimensions and Bai (2004), Zhang, Robinson

and Yao (2019) and Gao and Tsay (2021c) for HD time series. However, the situation

changes in the case of growing dimension because the estimated cointegration rank usually

grows as the dimension increases and the cointegration relationships are often hard to

interpret when there are many cointegrating vectors.

This paper marks a further development in estimating the cointegration rank of

HDUR time series from a predictive perspective. To avoid employing a large number

of cointegrating vectors given by a high-dimensional method, we estimate the effective

cointegration rank in a predictive framework. Specifically, suppose our goal is to predict

the future values of a HD stationary time series y ∈ Rp using x as predictors. It is well

known that only the cointegrated series have potential predictive power for the stationary

process y. If the number of cointegrating vectors is large, the stacked variables obtained

by cointegrating vectors form a HD stationary time series, and can be used as potential

predictors. But not all cointegrated series have predictive power for y, and we define

the effective cointegration rank as the effective dimension of the stacked variables that

have predictive power for y. The resulting effective rank can be much smaller than the

cointegration rank of x.

The proposed method consists of a two-step estimation procedure. First, we postulate

that the HDUR time series follows a factor model as that specified in Bai (2004), where

the common factors capture the nonstationary common trends of all the components,

and the idiosyncratic term is a stationary process. We apply the Principal Component

Analysis (PCA) to estimate the common stochastic trends and their associated loading

matrix, and the orthogonal complement of the loading matrix consists of the cointegrating

vectors. Second, we put together all stationary series obtained by the cointegrating vectors

of the first step to form a set of predictors, and perform a reduced-rank regression between

the yt series of interest and the predictors. To further explain the variability of the data,

we also include some lagged variables of yt in the regression and assume their coefficient

3



matrices are of low-dimensional structures. We propose two procedures to estimate all the

coefficient matrices depending on whether the autoregressive (AR) matrices are sparse

or of low-rank. When the AR coefficient matrices are sparse, we apply the nuclear norm

penalty to the regression coefficient matrix of the stationary predictors obtained from

the first step, and the LASSO penalty to the coefficients of the lagged variables. When

both the AR matrices and the coefficient matrix of the predictors are of low-rank, we

propose an integrative reduced-rank approach to estimate all unknown parameters. Two

iterative, alternating procedures are proposed to estimate all unknown coefficients under

the two aforementioned scenarios. Theoretical properties of the estimators are established

under the assumption that the dimensions p and N and the sample size T →∞. Both

simulated and real examples are used to illustrate the proposed procedure. The empirical

application suggests that the 13 macroeconomic variables from Welch and Goyal (2008)

provide satisfactory performance as predictors in forecasting the returns of 79 stocks in

the S&P 500 index.

The idea of using predictive regression to estimate the cointegrating vector can be found

in, for example, Koo et al. (2020). However, the method of Koo et al. (2020) only identifies

one cointegrating vector in predicting another univariate time series, whereas the proposed

method not only recovers the total cointegration rank, but also identifies the effective

cointegration rank in predicting a large panel of time series. In addition, the proposed

estimation method is different from theirs as we use PCA, reduced-rank, and LASSO

techniques to achieve our goals while they focus mainly on the use of LASSO regularization.

Note also that our framework is established for data with time series dependence structure

and we use a combination of reduced-rank and sparsity techniques in the estimation

procedure, which is different from most of the methods discussed in Reinsel, Velu and

Chen (2022+) that focus on the reduced-rank techniques for i.i.d. observations. The only

exception is the work of Lin and Michailidis (2017) in studying regularized estimation for

multi-block stationary VAR models using the tools and techniques developed in Negahban

and Wainwright (2011) and Agarwal, Negahban and Wainwright (2012). Furthermore,

none of the work mentioned above deals with HDUR time series data.

This paper makes multiple contributions. First, the cointegration problem has been

a central issue in modeling HDUR time series, but the lack of clear interpretations of a

large number of cointegrating vectors renders the existing HD methods less appealing.

We define the effective cointegration rank to select the most significant cointegration
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relationships from a predictive point of view using reduced-rank method. This method

often produces a small number of significant cointegrating vectors which are easier to

interpret in general. Second, our predictive regression model consists of both nonstationary

and stationary variables as predictors and has a wide range of applications including

the prediction of stock returns using macroeconomic series in finance and the prediction

of PM2.5 values using other air pollution and meteorological indexes in environmental

studies. Third, the proposed approach combines the advantages of using two regularization

methods, reduced-rank and LASSO, to reduce the dimension of a large system, and the

asymptotic results derived suggest that properties of both methods continue to hold when

they are used simultaneously in a regression model with serially dependent data. This is a

theoretical contribution.

This paper is organized as follows. We introduce the proposed model, estimation

methodology, and the modeling procedure in Section 2. Section 3 is devoted to theoretical

properties of the proposed model and its associated estimates, and Section 4 presents

some simulation results to demonstrate the performance of the proposed method in finite

samples. In Section 5, we apply the proposed method to the prediction of stock returns

using some commonly used macroeconomic predictors. Section 6 provides some discussions

and concluding remarks. All technical proofs of the theorems are relegated to an online

supplement.

Notation. To begin, we summarize here the notation used throughout the paper. The

bold upper case, bold lower case, and lower case letters are used to denote matrices,

vectors, and scalars, respectively. For a matrix A ∈ Rm×n, we use ‖A‖F, ‖A‖∗, and ‖A‖2

to denote its Frobenius, nuclear, and operator norms, that is,
√

tr(A′A), the sum of

singular values of A, and the largest singular value of A, respectively. Ip denotes the

p × p identity matrix. The superscript ′ denotes the transpose of a vector or a matrix.

For a matrix A = (a1, a2, . . . , an), we use vec(A) to denote its vectorization, which is

equal to (a′1, a
′
2, . . . , a

′
n)′, and we further use ‖vec(A)‖1 =

∑
i,j |aij| to denote the l1-norm

of A = [aij]. Finally, for two matrices A and B with commensurate dimensions, their

inner product is defined as 〈A,B〉 = tr(A′B). We also use the notation a � b to denote

a = O(b) and b = O(a). Finally, we use L(·) to denote the lag operator, which can shift a

scalar, vector or matrix time series back by one time period. For instance, for the matrix

Y = (y1,y2, . . . ,yT ), L(Y) = (y0,y1, . . . ,yT−1).
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2 The Model and Methodology

2.1 Model Setting

Let yt = (y1t, y2t, · · · , ypt)′ be an observable p-dimensional stationary time series, and

xt = (x1t, x2t, · · · , xNt)′ an observable N -dimensional I(1) process. We consider the

following predictive regression model:

yt = Wxt−1 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φdyt−d + et, t = 1, ..., T, (2.1)

where W is a p×N coefficient matrix associated with the I(1) process xt, and Φi is the

p× p coefficient matrix of yt−i, for 1 ≤ i ≤ d, and et ∼ WN(0,Σe) is a white noise error

term with mean zero and a nonsingular covariance Σe. Our goal is to estimate W and Φi

based on a given sample, and to forecast future values of yt. For simplicity, all variables

are set to zero if the time index is not positive. Also, Model (2.1) can be extended to

multi-step ahead predictions for yt+h with h > 0.

In Model (2.1), xt is nonstationary but all other variables are stationary so that it

only makes sense if some variables in xt are cointegrated, otherwise, W would essentially

be a zero matrix because the correlation between a stationary process and a unit-root

nonstationary one is zero in general. If we blindly apply the Least Squares (LS) method to

estimate the model, the number of parameters to be estimated is large, and the resulting

estimator Ŵ would be hard to interpret as we do not know whether all or only a few rows

in Ŵ are the estimated cointegrating vectors. In theory, if all the cointegrating vectors of

xt are known, then the resulting linear combinations of the I(1) variables are stationary

and can be useful predictors in Model (2.1). However, not all cointegration relationships

are helpful in predicting yt+h in general, especially when the dimension N of xt is large.

In view of the above discussion, we modify Model (2.1) as follows. First, similarly to

the setting in Bai (2004), we assume that xt admits a latent factor structure:

xt = Bft + εt, t = 1, 2, . . . , T, (2.2)

where ft = (f1t, f2t, . . . , frt)
′ is an r-dimensional factor process that constitutes the common

stochastic trends of xt, that is,

ft = ft−1 + ut, (2.3)
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where ut is an r-dimensional zero-mean stationary process that drives ft. The idiosyncratic

term εt in (2.2) is assumed to be a stationary process independent of the common factors

ft. Therefore, the cointegration rank of xt is N − r. For ease in model identification, we

assume that B is an orthonormal matrix such that B′B = Ir; see also Bai and Ng (2002)

and Fan, Liao and Mincheva (2013) for details.

Let Bc ∈ RN×(N−r) be an orthogonal complement matrix of B such that B′cBc = IN−r

and B′cB = 0. It follows from Model (2.2) that the columns of Bc can be treated as a set

of cointegrating vectors of xt because B′cxt = B′cεt is stationary. Letting

zt = B′cxt = B′cεt, (2.4)

we define W = AB′c and rewrite Model (2.1) as follows:

yt = Azt−1 + Φ1yt−1 + Φ2yt−2 + · · ·+ Φdyt−d + et, t = 1, ..., T, (2.5)

where zt is now a stationary process defined in (2.4). Similarly to the identifiability issue in

factor models, A and Bc are not uniquely defined. Nonetheless, the product, W = AB′c,

is uniquely defined. Therefore, we split Model (2.1) into (2.2)–(2.5), and our goal is to

estimate the factor loading matrix B or equivalently the cointegrating vector matrix Bc,

the coefficient matrices A and Φi, for 1 ≤ i ≤ d.

Although B, Bc and A are not uniquely defined due to the identification issue, the linear

spaces spanned by the columns of B and Bc, denoted as M(B) and M(Bc) respectively,

are uniquely defined. For any specific choice of Bc, A can also be uniquely determined.

Therefore, when we mention the estimation or consistency of the loading matrix B or

Bc in the sequel, we always refer to their column spaces to avoid any confusion. The

estimation of A is also based on a given and fixed Bc so that the procedure is valid.

2.2 Estimation Methodology

We consider two approaches to estimating the effective cointegration rank, or equivalently,

the reduced-rank of the coefficient matrix A, and the AR coefficients Φi’s for high-

dimensional cases under different assumptions. The first approach is based on imposing

a reduced-rank structure on the matrix A and some sparsity assumptions on the AR

coefficient matrices. The second approach requires that all predictors, including the lagged
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variables, have their own low-rank coefficient matrices.

2.2.1 A Reduced-Rank and Sparse Regression Approach

In this section, we introduce a Reduced-Rank and Sparse Regression approach (RRSRA) to

estimating the coefficient matrices A and Φi for observed data {x1, ...,xT} and {y1, ...,yT}.

Note that the dimensions of A ∈ Rp×(N−r) and Φi ∈ Rp×p can be very large under the

assumption that the number of common stochastic trends r is finite as p,N →∞. Even

if {z1, ..., zT} were given, the traditional LS method would lead to overfitting because

there are many parameters to estimate. Therefore, some structure regularization must be

imposed on the coefficient matrices. For simplicity, we assume the matrix A is singular

and has a reduced-rank form with rA = rank(A)� min(p,N − r), and the AR coefficient

matrices Φi’s are sparse in the sense that only a small number of elements in each matrix

are nonzero, for 1 ≤ i ≤ d.

Assume that the number of common stochastic trends r in Model (2.2) and the order

d ≥ 1 in Model (2.5) are known. Their selections will be discussed below. Note that zt

is unobservable in Model (2.5) and needs to be estimated from the data xt. We briefly

introduce the proposed two-step estimation procedure. First, similarly to that in Bai

(2004), we estimate the factor loading matrix B by solving the following optimization

problem:

(B̂, F̂) = arg min
B,F
‖X−BF‖2

F, subject to B′B = Ir, (2.6)

where X = [x1,x2, . . . ,xT ] and F = [f1, f2, . . . , fT ] are the stacked matrices across the

time horizon. It is not hard to show that the optimization method in (2.6) is equivalent

to Principal Component estimation, and the columns of B̂ are just the r standardized

eigenvectors of XX′ associated with the r largest eigenvalues. Therefore, we choose B̂c

such that its columns are the N − r standardized eigenvectors associated with the N − r

smallest eigenvalues of XX′. Then, we define ẑt = B̂′cxt, which serves as a proxy of zt and

will be used as predictors in the second step of estimation.

Next, we introduce a method to estimate the coefficient matrices A and Φi, for

1 ≤ i ≤ d. To begin, define Φ = [Φ1, ...,Φd] ∈ Rp×dp and Pt−1 = (y′t−1, ...,y
′
t−d)

′. For

any given penalty parameters λA > 0 and λΦ > 0, we solve the following optimization
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problem:

(Â, Φ̂) = arg min
A,Φ

{
1

2T

T∑
t=1

‖yt −Aẑt−1 −ΦPt−1‖2
2 + λA‖A‖∗ + λΦ‖vec(Φ)‖1

}
, (2.7)

where the data are set to 0 if the subscript t ≤ 0. For reduced-rank regression, we refer

the readers to the new monograph by Reinsel, Velu and Chen (2022+). In particular,

its Chapters 9 to 12 discuss some recent developments in reduced-rank regressions under

high-dimensional settings, including the use of nuclear-norm penalty in (2.7). Similar ideas

can also be found in Negahban and Wainwright (2011) and Chen, Dong and Chan (2013),

among others. However, most of the methods considered in the aforementioned literature

only deal with i.i.d. data, while we consider serially dependent data in this paper both

theoretically and empirically.

It is generally not easy to obtain the true global solutions to the optimization problem

in (2.7) because the objective function in the bracket of (2.7) involves different types of

penalties. Therefore, we formulate an iterative procedure to obtain an approximate set of

numerical solutions to (2.7) in Algorithm 1. Specifically, for a fixed A, we can estimate Φ

via a standard LASSO procedure, and there are several methods and software packages

available to obtain sparse solutions. See, for example, Hastie, Tibshirani and Wainwright

(2015). When Φ is fixed, the estimation of A is an instance of a semidefinite program.

See Vandenberghe and Boyd (1996) and Ji and Ye (2009). Since the objective function is

convex, it is also biconvex in both sets of parameters. If the estimates in all iterations

lie within a small ball around the true parameters, the convergence of the estimates to a

stationary point is guaranteed. Because the function is convex, the estimates also achieve a

global minimum. See, for example, Tseng (2001) and Burai (2013). The theoretical results

in Section 3 below are developed for the optimal solutions Â and Φ̂. The simulation

results in Section 4 suggest that the initial values in Algorithm 1 have little impact on the

asymptotic behavior of the estimates.

Next we turn to the interpretation of the low-rank structure of the matrix A in Model

(2.5). From Negahban and Wainwright (2011), we see that the estimation of the rank of A

is equivalent to an optimal selection of the penalty parameter λA. A similar argument

applies to the sparsity of Φ and the choices of λΦ. See also, Hastie, Tibshirani and

Wainwright (2015). Suppose the true rank of A is equal to k0 � min{p,N − r}, we may

decompose A as A = CR′ with C ∈ Rp×k0 and R ∈ R(N−r)×k0 . Therefore, R′zt is a
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Algorithm 1 An Iterative Procedure for Estimating A and Φ

Input: the data matrices Y = [y1, ...yT ] and Ẑ = [ẑ0, ..., ẑT−1]

Output: Â← Â(k), Φ̂← Φ̂(k)

1: Initialize with k = 0 and Φ(0) = 0p×p
2: while Â(k) or Φ̂(k) is not convergent do
3: Â(k+1) ← arg minΦ

1
2T

∑T
t=1 ‖yt −Aẑt−1 − Φ̂(k)Pt−1‖2

2 + λA‖A‖∗
4: Φ̂(k+1) ← arg minΦ

1
2T

∑T
t=1 ‖yt − Â(k)ẑt−1 −ΦPt−1‖2

2 + λΦ‖vec(Φ)‖1

5: k ← k + 1
6: end while

k0-dimensional stationary random vector and has some predictive power for the future

values of yt. Note that R′zt = R′B′cxt, implying that R′B′c is the reduced-rank matrix

consisting of k0 significant cointegrating vectors that play important roles in predicting

the future values of yt. In other words, the cointegration rank N − r can be reduced to a

smaller number k0 which is useful in prediction and is also easier to interpret. We call k0

the effective cointegration rank of such a prediction application.

2.2.2 An Integrative Reduced-Rank Approach

In this section, we introduce an integrative reduced-rank approach (IRRA) to estimating

all the coefficient matrices of Model (2.1). The approach is similar to the setting in

Chapter 10 of Reinsel, Velu and Chen (2022+) for i.i.d. observations, but we focus on

Model (2.5) with time-series dependence. Specifically, under Models (2.2)–(2.5), the IRRA

assumes that each set of predictors has its own low-rank coefficient matrix, that is, in

addition to the assumption in Section 2.2.1 that rA � min(p,N − r), we also assume that

0 ≤ ri = rank(Φi)� p, for 1 ≤ i ≤ d, when both p and N are large. This approach bridges

the reduced-rank and the sparse models in the sense that the coefficient matrix Φi is fully

sparse with all entries being zero if ri = 0. On the other hand, the groupwise low-rank

structure in IRRA is more flexible and different from a globally low-rank structure for Φ

defined in Section 2.2.1. The low-rankness of Φi’s does not necessarily imply that Φ is of

low rank, while a low-rank matrix Φ implies that each Φi is of low-rank, which cannot

exceed that of Φ. Under this assumption, we consider the following convex optimization

problem:

(Â, Φ̂i) = arg min
A,Φi

{
1

2T

T∑
t=1

‖yt −Aẑt−1 −ΦPt−1‖2
2 + λA‖A‖∗ +

d∑
i=1

λi‖Φi‖∗

}
, (2.8)
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where λA and λi are the penalty parameters associated with A and Φi, respectively.

Similarly to the setting of Reinsel, Velu and Chen (2022+), we may rewrite λi as λi = λΦwi

for a global penalty λΦ and some prescribed constant wi, for 1 ≤ i ≤ d. It is clear that λi

is a tuning parameter controlling the amount of regularization applied to Φi. If wi = 1,

and hence λ1 = ... = λd, all penalty parameters of Φi are the same. A simple choice is to

take

wi = σ1(Y){√p+
√
rank(Y)}/T, i = 1, ..., d,

so that we only have a single parameter λΦ to control the regularization of the coefficient

Φi, for 1 ≤ i ≤ d.

Because the objective function in (2.8) is convex, there are several feasible algorithms

available to solve the optimization problem therein. For example, following the recipe in

Boyd et al. (2011), Li, Liu and Chen (2019) proposed an Alternating Direction Method of

Multipliers (ADMM) algorithm to fit a model similar to that in (2.5) with reduced-rank

structures. However, the ADMM algorithm is relatively more involved as it alternates

between a primal step and a dual step. In this paper, we propose an easy-to-implement

iterative procedure to estimate all the coefficient matrices with reduced-rank structures,

which is similar to the block coordinate descent method in Tseng (2001). The detailed

procedure is outlined in Algorithm 2 below. Since the objective function is convex, by

the argument in Tseng (2001), the convergence of the estimators via Algorithm 2 to a

stationary point is guaranteed. On the other hand, from Boyd and Vandenberghe (2004),

we know that the conjugate of a conjugate function of a convex one is itself, by Theorem

2 of Burai (2013), the stationary point obtained by Algorithm 2 is a global minimum.

Simulation results in Section 4.2 suggest that the estimators obtained by Algorithm 2 are

comparable to those obtained by the ADMM method, while the former is much easier

to implement than the latter in practice. Similarly to the argument used at the end of

Section 2.2.1, the cointegration rank has been reduced to a much smaller and effective one

due to the reduced-rank structure of A. We omit the details to save space.

2.3 Determination of the Number of Factors

The estimation of B̂ and its orthogonal complement B̂c in the prior sections is based

on a given r, which is unknown in practice. There are several methods available in the

literature to determine the number of unit-root factors in Equation (2.2). See, for example,
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Algorithm 2 Iterative procedure for Estimations of A and Φi, i = 1, . . . , d

Input: the data matrices Y = [y1, ...yT ] and Ẑ = [ẑ0, ..., ẑT−1]

Output: Â← Â(k), Φ̂i ← Φ̂
(k)
i , i = 1, . . . , d

1: Initialize with k = 0 and Φ
(0)
i = 0p×p, i = 1, . . . , d

2: while any of Â(k), Φ̂
(k)
1 , . . . , Φ̂

(k)
d is not convergent do

3: Â(k+1) ← arg minΦ
1

2T

∑T
t=1 ‖yt −Aẑt−1 − Φ̂(k)Pt−1‖2

2 + λA‖A‖∗
4: for i = 1 to d do
5: Φ̂

(k+1)
i ← arg minΦi

1
2T

∑T
t=1 ‖yt − Â(k)ẑt−1 − Φ̂(k)Pt−1 + (Φ̂

(k)
i −Φi)yt−i‖2

2

+λΦ‖Φi‖∗
6: end for
7: k ← k + 1
8: end while

the information criterion in Bai (2004), the Canonical Correlation Analysis (CCA) method

in Peña and Poncela (2006), the autocorrelation-based method in Zhang, Robinson and

Yao (2019) and its modified version in Gao and Tsay (2021c), among others.

In this paper, we adopt the auto-correlation based method of Gao and Tsay (2021c).

Specifically, let Ξ̂ = (ξ̂1, ..., ξ̂N ) := [B̂, B̂c] be the matrix containing all the eigenvectors of

XX′ and f̂j,t = ξ̂′jxt be the j-th principal component, for 1 ≤ j ≤ N . For some prescribed

integer k̄ > 0, define

Sj(k̄) =
k̄∑
k=1

|ρ̂j(k)|, (2.9)

where ρ̂j(k) is the lag-k sample autocorrelation function (ACF) of the principal component

f̂j,t, for 1 ≤ j ≤ N . If f̂j,t is stationary, then under some mild conditions, ρ̂j(k) decays to

zero exponentially as k increases, and limk̄→∞ Sj(k̄) <∞ as T →∞. If f̂j,t is unit-root

nonstationary, then ρ̂j(k) → 1, and limk̄→∞ Sj(k̄) = ∞ as T → ∞. Therefore, we start

with j = 1. If the average of the absolute sample ACFs Sj(k̄)/k̄ ≥ δ0 for some constant

0 < δ0 < 1, then f̂j,t has a unit root and we increase j by 1 to repeat the detecting process.

This detecting process is continued until Sj(k̄)/k̄ < δ0 or j = N . If Sj(k̄)/k̄ ≥ δ0 for all j,

then r̂ = N ; otherwise, we denote r̂ = j − 1.

2.4 Selection of the Tuning Parameters

In this section, we briefly introduce a way to choose the tuning parameters λA and λΦ,

and the order d in (2.7). We only consider the procedure introduced in Section 2.2.1 since

the one in Section 2.2.2 is similar. We first fix the order d and consider the subsamples

{y1, ...,yT1+j} and {x1, ...,xT1+j−1}, for 0 ≤ j ≤ T − T1 − 1 and T1 < T . We then
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adopt a rolling-window-based method to select λA and λΦ from a forecasting perspective.

Specifically, we prescribe two candidate intervals [a1, a2] and [b1, b2] with a2 > a1 > 0 and

b2 > b1 > 0, and choose (λA, λΦ) from [a1, a2] × [b1, b2] via a grid-search approach. For

any pair (λA, λΦ) ∈ [a1, a2]× [b1, b2] and each 0 ≤ j ≤ T − T1 − 1, we first estimate the

loading matrix and obtain the stationary process {ẑ1, ..., ẑT1+j−1} based on the sample

{x1, ...,xT1+j−1}, and apply the iterative procedure in Algorithm 1 to obtain the estimators

for all the coefficients based on the subsample {y1, ...,yT1+j}. We can then obtain the

predicted value ŷT1+j+1 for yT1+j+1. We repeat the above procedure for 0 ≤ j ≤ T −T1− 1

and obtain all the forecasts {ŷT1+j+1, ..., ŷT}. Define the average of forecast errors as

FEd(λA, λΦ) =
1

p(T − T1)

T−T1−1∑
j=0

‖ŷT1+j+1 − yT1+j+1‖2
2. (2.10)

Note that the forecast errors defined in (2.10) also depend on the value of d, which itself is

unknown in practice. We may prescribe an integer d̄ > 0 and search the optimal one over

0 ≤ d̂ ≤ d̄ such that the forecast error is minimized. Consequently, the optimal tuning

parameters are chosen as

(λ̂A, λ̂Φ, d̂) = arg min
(λA,λΦ)∈[a1,a2]×[b1,b2]

0≤d≤d̄

FEd(λA, λΦ). (2.11)

In practice, for simplicity, d̄ is often chosen as a small integer provided that the series

under study is not seasonal. This choice can also be justified theoretically, because the

marginal model of a p-dimensional VAR(d) process is ARMA(pd, p(d− 1)) the order of

which can be sufficiently high when p is large; see, for instance, Chapter 2 of Tsay (2014).

In this paper, we choose d̄ = 3 and the proposed model and procedure work sufficiently

well in the real data analysis.

3 Theoretical Properties

In this section, we investigate some theoretical properties of the coefficient estimates B̂,

Â, and Φ̂ under the condition that p,N, T →∞. We start with some assumptions and

postpone proofs of all theorems to an online supplement.

Assumption 1. The process {ut, εt} is α-mixing with the mixing coefficient satisfying
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the condition α(k) ≤ exp(−ckγ) for some constants c > 0 and γ > 0, where

α(k) = sup
i

sup
A∈Fi

−∞
B∈F∞i+k

|P(A ∩B)− P(A) P(B)|,

and F ji is the σ-algebra generated by {(ut, εt) : i ≤ t ≤ j}.

Assumption 2. ut, εt and et are sub-exponentially distributed in the sense that there are

two constants C1, C2 > 0 such that P(|v′(ηt − E(ηt))| > x) ≤ C1 exp(−C2x) holds for any

x > 0 and ‖v‖2 = 1, where ηt can be any process of ut, εt or et.

With the identification condition B′B = Ir, the processes ft and ut have an additional

strength of
√
N . For the stationary process ut in (2.3), define a normalized process

SrT (t) = (S1
T (t1), . . . , SrT (tr))

′ =

 1√
NT

[Tt1]∑
s=1

u1s, . . . ,
1√
NT

[Ttr]∑
s=1

urs

′ ,
where t = (t1, t2, . . . , tr)

′ is a constant vector with 0 ≤ t1 ≤ · · · ≤ tr ≤ 1.

Assumption 3. For any vector t = (t1, t2, . . . , tr)
′ with 0 ≤ t1 ≤ · · · ≤ tr ≤ 1, there exists

a Gaussian process W(t) = (W1(t1), . . . ,Wr(tr))
′ such that SrT (t)

J1=⇒W(t) on Dr[0, 1]

as T → ∞, where
J1=⇒ denotes weak convergence under the Skorokhod J1 topology (see

Billingsley (1999, Chapter 3)), and W(1) has a positive definite covariance matrix.

Assumption 4. For any i ≤ r, j ≤ N , it holds that

1

T

T∑
t=1

fitεjt = Op(1),

uniformly in i and j.

Assumption 5. For the p× p matrix polynomial Φ(L) = Ip −
∑d

i=1 ΦiL
i, all solutions

of the determinant equation |Φ(L)| = 0 are outside the unit circle.

Assumption 1 is standard for dependent random processes. For a theoretical justifi-

cation of the mixing conditions for VAR models, see Gao et al. (2019). Assumption 2

implies that all moment conditions for the idiosyncratic terms in Bai (2004) are satisfied.

Assumption 3 is used to characterize the limiting behavior of the unit-root factors. Similar

assumptions are used in Bai (2004), Zhang, Robinson and Yao (2019), and Gao and Tsay
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(2021c), among others. Assumptions 1-3 imply that all conditions for the common factors

and the idiosyncratic terms in Bai (2004) hold. Assumption 4 is used to control the

sample covariance between the common factors and the idiosyncratic terms. The rate

in Assumption 4 is not strong and can be established under the setting of Stock (1987),

where we can assume the factors and idiosyncratic terms have similar structure as those

in (2.4) therein. Assumption 5 is the standard stationarity condition for a VAR process.

Turn to the convergence of the estimated loading matrix and its orthogonal complement.

Note that the loading matrix B is not uniquely defined due to the identification issue,

only the linear space spanned by its columns, denoted by M(B), or the matrix product

BB′ is uniquely defined. We state the convergence of the estimated loading matrix and

its orthogonal complements in the following theorem.

Theorem 1. Suppose Assumptions 1-4 hold. Assume r is finite and known. Then, as

N, T →∞,

‖B̂B̂′ −BB′‖2 = Op(T
−1) and ‖B̂cB̂

′
c −BcB

′
c‖2 = Op(T

−1). (3.1)

Consequently,

N−1/2‖B̂f̂t −Bft‖2 = Op(N
−1/2 + T−1/2).

Remark 1. From Theorem 1, the two distances in (3.1) are of the same rate which is

reasonable because we used the matrix perturbation theory in the proofs and the two matrices

play symmetric roles in Lemma A1 of the Supplement. The discrepancy measure used in

Theorem 1 is equivalent to the sin(Θ) distance in the literature concerning the distance

between two orthogonal matrices. See (3.2)–(3.4) of Gao and Tsay (2021a) for details. In

addition, based on Gao and Tsay (2021a), the first distance ‖B̂B̂′−BB′‖2 in (3.1) is also

equivalent to the measure between two linear spaces defined in Pan and Yao (2008):

D(M(B),M(B̂)) =

√
1− tr(BB′B̂B̂′)/r,

when r is finite, but the second distance in (3.1) is not because the dimension of Bc is

diverging.

The following theorem establishes the convergence of the estimated number of common

stochastic trends.

15



Theorem 2. Suppose Assumptions 1–4 hold. If N1/2 log(T )T−1/2 → 0, then P (r̂ = r)→ 1

as N, T →∞, where r̂ is obtained by the autocorrelation-based method in Section 2.3.

Next, turn to the convergence of the estimated regression coefficients obtained in

Section 2. To control the errors between the estimated coefficients and the true ones, we

introduce a Restricted Strong Convexity (RSC) condition which is often used in high-

dimensional regularized estimation problems. See Agarwal, Negahban and Wainwright

(2012) and Wainwright (2019, Chapter 9) for details. For any given λA, λΦ > 0, and

a matrix ∆ ∈ Rp×(N−r+dp) = [∆1,∆2] with ∆1 ∈ Rp×(N−r) and ∆2 ∈ Rp×dp, we use a

weighted combination to define an associated norm as follows:

Ψ(∆) := λA‖∆1‖∗ + λΦ‖ vec(∆2)‖1. (3.2)

The restricted strong convexity condition under our setting is defined below.

Definition 1. Consider a generic operator X : Rp×(N−r+dp) 7→ Rp×T . We say that it

satisfies the RSC condition with respect to norm Ψ, if

1

2T
‖X (∆)‖2

F ≥
κ1

2
‖∆‖2

F − τTΨ2(∆), for some ∆ ∈ Rp×(N−r+dp),

where κ1 > 0 and τT > 0 are the curvature and tolerance constants, respectively.

When τT = 0, the RSC condition in Definition 1 is called a locally strong convexity

condition. See Wainwright (2019, Chapter 9). Denote ∆ = [∆A,∆Φ] with ∆A = Â−A

and ∆Φ = Φ̂−Φ. We now establish the convergence rates of the estimated coefficient

matrices below.

Theorem 3. Suppose Assumptions 1–5 hold. For the augmented data matrices Z =

[z0, ..., zT−1] and P = [P0, ...,PT−1], where all variables with zero or negative time indexes

are set to 0, if the operator

X ([∆A,∆Φ]) := ∆AZ + ∆ΦP

satisfies the RSC condition with the norm in the form of (3.2), curvature κ1 and tolerance

τT such that

κ1 ≥ CτT rAλ
2
A, and κ1 ≥ CτT sΦλ

2
Φ,
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where rA and sΦ are the rank of A and the cardinality of the support of Φ, respectively,

then with the regularization parameters λA and λΦ satisfying

λA ≥
3

T
‖EZ′‖2 and λΦ ≥

2

T
‖vec (EP′)‖∞,

where E = [e1, ..., eT ] is the error matrix of (2.5), we have

‖Â−A‖2
F + ‖Φ̂−Φ‖2

F ≤ C
λ2

ArA + λ2
ΦsΦ

κ2
1

. (3.3)

Remark 2. (i) Under Assumptions 1–5, by the Bernstein-type inequality for weakly

dependent data in Merlevède, Peligrad and Rio (2011) and the argument in the proofs

of Lemma 3 in Negahban and Wainwright (2011), it is not hard to show that ‖EZ′‖2 =

Op(
√

(p+N)T ). Then, the condition for λA becomes λA ≥ C
√

(p+N)/T . Similarly,

by the Bernstein-type inequality in Merlevède, Peligrad and Rio (2011), we can also

show that ‖vec (EP′)‖∞ = Op(
√
T log(p)), and therefore, the condition for λΦ reduces to

λΦ ≥ C
√

log(p)/T , which is the same as that in the LASSO literature. See Wainwright

(2019).

(ii) For a properly chosen C∗ > 0 such that λA = C∗
√

(p+N)/T and λΦ = C∗
√

log(p)/T

satisfy the conditions in Theorem 3, under the setting that p/T → 0 and N/T → 0, we

may choose an τT > 0 such that κ1 > C max(τT rAλ
2
A, τT sΦλ

2
Φ) > 0 is a positive constant,

and then it follows from Theorem 3 that

‖Â−A‖2
F + ‖Φ̂−Φ‖2

F ≤ C

(
rA
p+N

T
+ sΦ

log(p)

T

)
→ 0,

as p,N, T →∞ for finite rA and sΦ, implying that the estimated coefficient matrices are

consistent.

(iii) Under the settings in Remark 2(ii), we immediately obtain the consistencies for both

matrices:

‖Â−A‖2
F → 0 and ‖Φ̂−Φ‖2

F → 0, as p,N, T →∞. (3.4)

If there is a positive constant C > 0 such that the minimum nonzero singular value of A

and the minimum absolute elements in Φ, denoted by σrA and |Φ|min respectively, satisfy

σrA > C > 0 and |Φ|min > C > 0 as p,N, T → ∞, (3.4) implies that P (r̂A = rA) → 1

and P (ŜΦ = SΦ)→ 1, where r̂A = rank(Â), rA = rank(A), and ŜΦ and SΦ contain all
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the indexes of the nonzero elements in Φ̂ and Φ, respectively. We omit the details to save

space.

To establish properties of the estimated coefficients using the IRRA of Section 2.2.2,

we first introduce a restricted set that is constructed by a projection of any matrix onto a

subspace generated by another one of the same shape. Specifically, for any m× n matrix

Θ, we perform a singular value decomposition (SVD) Θ = UDV′ with a partition as

follows,

Θ =
[
Uk Uk,c

]Dk

Dk,c

V′k

V′k,c

 , (3.5)

where Uk ∈ Rm×k and Vk ∈ Rn×k are the sub-matrices consisting of the left and right

singular vectors associated with the k largest singular values of Θ, respectively, and

Uk,c ∈ Rm×(m−k) and Vk,c ∈ Rn×(n−k) are the remaining ones. Similarly to Negahban and

Wainwright (2011), we define two subspaces as follows,

SΘ(k) = {A ∈ Rm×n : range(A) ⊆ range(Uk), range(A′) ⊆ range(Vk)}, and

S⊥Θ(k) = {A ∈ Rm×n : range(A) ⊥ range(Uk), range(A′) ⊥ range(Vk)}.
(3.6)

For any matrix M ∈ Rm×n, we decompose it as M = M1 + M2, where

M2 = Uk,cU
′
k,cMVk,cV

′
k,c, and M1 = M−M2. (3.7)

Because M2 ∈ S⊥Θ(k), we use ΠS⊥Θ(k)(M) = M2 to denote the projection of matrix M onto

the subspace S⊥Θ(k).

Turn to the estimated coefficients using the IRRA of Section 2.2.2. By an abuse

of notation, we define ∆ = [∆A,∆Φ] = [∆A,∆Φ1 , ...,∆Φd
] with ∆A = Â − A ∈

Rp×(N−r) and ∆Φi
= Φ̂i − Φi ∈ Rp×p, and hence ∆Φ ∈ Rp×dp. We decompose ∆A as

∆A = ∆A,1 + ∆A,2 and ∆Φi
as ∆Φi

= ∆Φi,1 + ∆Φi,2, for 1 ≤ i ≤ d. It follows that

∆A,2 = ΠS⊥A(rA)(∆A), and ∆Φi,2 = ΠS⊥Φi
(ri)

(∆Φi
), for 1 ≤ i ≤ d. We define a restricted

set C as

C(r1, ..., rd) =

{
∆ ∈ Rp×(N−r+dp) |‖∆A,2‖∗ +

d∑
i=1

‖∆Φi,2‖∗ ≤ 3‖∆A,1‖∗

+ 3
d∑
i=1

‖∆Φi,1‖∗
}
.

(3.8)
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We make an additional assumption below.

Assumption 6. For the operator X defined in Theorem 3, we assume

1

2T
‖X (∆)‖2

F =
1

2T
‖∆AZ + ∆ΦP‖2

F ≥ κ2‖∆‖2
F, for all ∆ ∈ C(r1, ..., rd),

where κ2 > 0 is a constant and C(r1, ..., rd) is defined in (3.8).

Note that Assumption 6 is a locally restricted strong convexity condition by setting

τT = 0 in Definition 1. Similar assumptions are also considered in Chapter 10 of Reinsel,

Velu and Chen (2022+) for i.i.d. data. We next state the convergence of the estimated

coefficients based on the IRRA of Section 2.2.2.

Theorem 4. Assume Assumptions 1–5 hold. Suppose the predictor matrices Z and P

satisfy the condition in Assumption 6 over the set C defined in (3.8). If λA and λi satisfy

λA ≥
3

T
‖EZ′‖2 and λi ≥

2

T
‖ELi(Y)′‖2, for i = 1, 2, . . . , d,

then, as p,N, T →∞, we have

‖Â−A‖2
F +

d∑
i=1

‖Φ̂i −Φi‖2
F ≤ C

(
rAλ

2
A +

d∑
i=1

riλ
2
i

)
/κ2

2.

Remark 3. (i) Assumption 6 can be replaced by a weaker RSC condition as that in

Theorem 3, and the results in Theorem 4 continue to hold with minor modifications in the

proofs given in the online supplement.

(ii) The convergence rates of the estimated coefficients are the same as those in Chapter 10

of Reinsel, Velu and Chen (2022+), even for time-series data with mild serial dependence.

(iii) By the discussions in Remark 2(i)–(ii), we may also choose λA = C∗
√

(p+N)/T

and λi = C∗
√
p/T for some constant C∗ > 0 satisfying the conditions in Theorem 4, such

that the convergence results in Theorem 4 can be rewritten as

‖Â−A‖2
F +

d∑
i=1

‖Φ̂i −Φi‖2
F ≤ C

{
(p+N)rA

T
+

d∑
i=1

pri
T

}
,

which approaches zero asymptotically under the setting that p/T → 0 and N/T → 0,

implying that the estimators are consistent. It is straightforward to see that the convergence
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rates above are slightly slower than those in Remark 2(ii) if the sparsity parameter therein

satisfies sΦ/p→ 0, which is often the case in sparse regression. This is understandable since

there are usually more autoregressive coefficients to estimate in a reduced-rank regression

in (2.8) than in the sparse counterpart in (2.7).

4 Simulation Study

In this section, we evaluate the finite-sample performance of the proposed methodologies

under the scenarios when both p and N are increasing from small to large. Though the

dimensions of B and B̂ are not necessarily the same, as estimation error in r may occur,

the discrepancy measure adopted in Theorem 1 remains valid. To simplify the presentation

and without loss of generality, we set d = 1 in (2.5), and similar results can also be

obtained for other choices of finite d.

4.1 Example 1: The Reduced-Rank and Sparse Regression

4.1.1 Data Generating Process

We follow the data generating process in (2.2) and (2.5) and consider a three-factor

model, where the factors are I(1) processes generated by (2.3). We further multiply

the factors by
√
N because we will use orthonormal loading matrices below and the

strength of general loadings is imposed on the factors in line with the assumptions and

identification conditions. While the number of factors r = 3 is fixed, we set p = 20, 40, 60,

and N = 20, 40, 60, respectively, and in each configuration of (p,N), we set the sample

size T = 400, 800, 1200 to illustrate the proposed method and to exam certain theoretical

properties of the estimators. In order to obtain reproducible results, we initialize a random

generator in the NumPy package in Python by setting the seed to 1024, and this seed is

used throughout the simulation.

To begin, we need to obtain the coefficient matrices of the model. We start with

generating the loading matrix B and its corresponding orthogonal complement Bc. As

[B̂, B̂c] is an N ×N full-rank orthonormal matrix, we first randomly generate an N ×N

orthogonal matrix, and divide its columns in such a way that the submatrix with the first

r columns is chosen as B and the remaining columns form naturally the Bc matrix. For

the low-rank matrix A, we first randomly generate two orthonormal matrices U ∈ Rp×p
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and V ∈ R(N−r)×(N−r), and a p× (N − r) rectangular diagonal matrix D with only five

positive entries on the upper left of the diagonal while all the other entries are set to zero.

The positive diagonal entries in D are drawn independently from a uniform distribution

on the interval of [0.1, 1) so that all the five elements are strictly greater than 0. The

matrix A with rank rA = 5 is then chosen as A = UDV′. Next, for the sparse matrix Φ,

we first create a sparse matrix Φ1 with only 20 randomly located non-zero entries each

of which is drawn uniformly on the intervals (−1,−0.1] ∪ [0.1, 1). In order to guarantee

the stationarity of yt in (2.5), we use the normalized matrix Φ = 0.9×Φ1/‖Φ1‖2 as the

autoregressive coefficient matrix, which implies that Assumption 5 holds.

For each configuration of (p,N, T ), with the coefficient matrices B,Bc,A and Φ chosen

by the aforementioned methods, we generate xt, zt and yt according to Models (2.2), (2.4)

and (2.5), respectively. To obtain stable results, we use 500 replications for each (p,N, T )

configuration and set εt ∼ N(0, IN), ut ∼ N(0, Ir), and et ∼ N(0, Ip) in each realization.

4.1.2 Performance Evaluation

We first study the performance of (2.9) in estimating the number of factors. Because

the data generating process xt of the previous section is independent of the dimension

p, we only illustrate the proposed method for the case of p = 20, and similar results can

also be obtained for other cases. Table 1 reports the empirical probabilities of P (r̂ = r)

based on 500 repetitions for each (N, T ) configuration when p = 20, where we use the

method described in Section 2.3 with k̄ = 10 and δ0 = 0.3. From Table 1, we see that the

auto-correlation based method can successfully recover the number of common stochastic

trends. This is understandable because all the factors used in the simulation are strong

ones. Similar results can also be found in Bai and Ng (2002) and Lam and Yao (2012).

Table 1: Empirical probabilities of P (r̂ = r) for various (N, T ) configurations, where the
value is r = 3 and the dimension is p = 20. The estimation method of Section 2.3 with
k̄ = 10 and δ0 = 0.3 is used, and the results are based on 500 iterations.

N
T 20 40 60

400 100.00% 100.00% 100.00%
800 100.00% 100.00% 100.00%
1200 100.00% 100.00% 100.00%

Next, we consider the estimation accuracy of the loading matrix B, which is measured

by ‖BB′ − B̂B̂′‖2 over 500 replications. For the same reason mentioned before, we only
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show the results for the case of p = 20. Boxplots of the discrepancies are shown in Figure 1,

from which we see that for each N , the discrepancy between the estimated loading matrix

and the true one decreases as the sample size T increases. This result is in agreement with

our theorems. Furthermore, we also evaluate the estimation errors of the extracted factors.

For each (N, T ) configuration, we define the the root-mean-squared-error (RMSE) of the

estimated factors as

RMSE =

(
1

NT

T∑
t=1

‖Bft − B̂f̂t‖2
2

)1/2

, (4.1)

which quantifies the accuracy in recovering the common stochastic trends. Figure 2 shows

the results via boxplots using 500 replications. From Figure 2, we see clearly that, the

recovery errors of the common factors decrease as the sample size T increases, which is

consistent with the theoretical results in Theorem 1.
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Figure 1: Boxplots of ‖BB′ − B̂B̂′‖2 with r = 3 and p = 20 in Example 1. For each N
(dimension of xt), the sample sizes used are 400, 800 and 1200, respectively. The results
are based on 500 replications.

We then study the estimation accuracy of the low-rank matrix A and the sparse matrix

Φ using the procedure in Algorithm 1. For simplicity, we set the tuning parameters

λA =
√

(p+N)/T and λΦ =
√

log(p)/T , which are just taken from the rates discussed

in Remark 2(ii) by setting C∗ = 1 and this choice is good enough to produce satisfactory

performance in the simulation. In practice, we may choose an optimal C∗ from an interval

using grid search. Due to the identification issue as that for B, we also use ‖AA′− ÂÂ′‖2

to evaluate the discrepancy between Â and A. Because there is no identification issues

with Φ and the estimated Φ̂, we use ‖Φ− Φ̂‖2 to measure the estimation accuracy of the

autoregressive coefficients. Boxplots of the estimation errors for Â and Φ̂ are presented in

the Figures 3 and 4, respectively. As expected from Theorem 3, in each case of (p,N), the
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Figure 2: Boxplots for RMSE of the extracted factors defined in (4.1) with r = 3 and
p = 20 in Example 1. For each N , the sample sizes used are 400, 800, and 1200, respectively.
The results are based on 500 replications.

estimation errors of A and Φ both decrease as the sample size T increases, which is also

consistent with our theoretical properties.
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Figure 3: Boxplots for ‖AA′ − ÂÂ′‖2 of Example 1. For each (p,N) configuration, the
sample sizes used are T = 400, 800, 1200, and the number of repetitions is 500.

Finally, we consider the estimation errors of the estimated explanatory variables and

the true ones in Model (2.5). Similarly to that in (4.1), we define the RMSE for the

regression model (2.5) as

RMSE =

(
1

pT

T∑
t=1

‖Azt−1 + Φyt−1 − (Âẑt−1 + Φ̂yt−1)‖2
2

)1/2

, (4.2)

which is similar to the in-sample errors of a regression model. Figure 5 displays boxplots

of the RMSEs in (4.2). From the plot, we see that the patterns of the boxplots are similar

to those obtained before. For each given (p,N), the RMSEs decrease as the sample size T
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Figure 4: Boxplots for ‖Φ− Φ̂‖2 of Example 1. In each case of (p,N), the sample sizes
used are T = 400, 800, 1200, and the results are based on 500 repetitions.
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Figure 5: Boxplots for denoised RMSE of yt defined in (4.2) of Example 1. For each pair
of (p,N), the sample sizes used are 400, 800 and 1200 and the number of repetitions is
500.

increases, illustrating the efficacy of the proposed method. Overall, the simulation results

indicate that the proposed procedure works well in recovering the estimated coefficients.

4.2 Example 2: The Integrative Reduced-Rank Approach

In this example, we investigate the performance of IRRA of Section 2.2.2. First, we

generate the data xt using the same method as that of Section 4.1.1. Second, unlike the

sparse autoregressive matrices in Example 1, we generate two low-rank matrices Φ1 ∈ Rp×p

and Φ2 ∈ Rp×p under the context of the IRRA. Without loss of generality, we generate the

those low-rank matrices in the same way as that of A, and set rank(Φ1) = rank(Φ2) = 3.

Third, the process yt is then generated according to (2.5) with the coefficients given above,

where we choose d = 2.
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Figure 6: Boxplots for ‖AA′− ÂÂ′‖2 of Example 2, where Â is estimated by Algorithm 2.
For each pair of (p,N), the sample sizes used are T = 400, 800 or 1200, and the number of
repetitions is 500.

Similarly to the procedure in Example 1, we apply (2.9) and Algorithm 2 to estimate

the number of factors and the coefficients, respectively. Since the performance of the

auto-correlation based method is shown in Example 1, we omit the details here. Figures 6,

7 and 8 show the discrepancies between the estimated coefficients and the true ones using

Algorithm 2. From these boxplots, we see that, for each configuration of (p,N), all three

coefficient estimates Â, Φ̂1 and Φ̂2 converge to the true ones as T →∞, which is consistent

with our theory. For comparison, we also test the ADMM algorithm of Li, Liu and Chen

(2019), and find that the results of ADMM are quite close to those of the Algorithm 2 in

the sense that the distance ‖Θ̂(Ite) − Θ̂(ADMM)‖2/‖Θ̂(Ite)‖2 is less than 10% in most cases,

where Θ̂ = Â, Φ̂1 or Φ̂2, and Θ̂(Ite) and Θ̂(ADMM) are the coefficient matrices estimated

by Algorithm 2 and ADMM, respectively. Therefore, we omit the results obtained by the

ADMM algorithm to save space.
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Figure 7: Boxplots for ‖Φ1 − Φ̂1‖2 in Example 2, where Φ̂ is estimated by Algorithm 2.
For each pair of (p,N), the sample sizes used are T = 400, 800 and 1200, and the number
of repetitions is 500.
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Figure 8: Boxplots for ‖Φ2 − Φ̂2‖2 in Example 2, where Φ̂ is estimated by Algorithm 2.
For each pair of (p,N), the sample sizes used are T = 400, 800 and 1200, and the results
are based on 500 repetitions.
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5 Real Data Analysis

In this section, we apply the proposed method to predicting monthly stock returns. Welch

and Goyal (2008) examined the predictability of some macroeconomic variables to the

equity premium, and concluded that the performance of the predictions, both in-sample

and out-of-sample, is poor and unstable. Using the same set of predictors, Koo et al.

(2020) exploited the cointegration relationship of the predictors, and showed that LASSO

can improve the predictability of the macroeconomic variables in forecasting the equity

premium of S&P 500 index. We use an extended data set and conduct a forecasting

experiment using the proposed method. Note that we predict the stock returns of a

cross-section, instead of the equity premium of an individual stock or index.

5.1 Data and Empirical Strategy

Consider the monthly returns of selected stocks in the S&P 500 index. Using the con-

stituents of the index in January 2011 and the data structures in the CRSP (Center

for Research in Security Prices) database, we select 79 stocks, which have no miss-

ing values during the time span from January 1960 to December 2019, as our sample.

Therefore, we have 720 monthly observations of 79 I(0) processes. We also collect the

monthly macroeconomic variables in Welch and Goyal (2008) as the predictors. An

updated version of the data can be downloaded from Prof. Amit Goyal’s personal website

(https://sites.google.com/view/agoyal145), where we choose 13 macroeconomic pre-

dictors as the I(1) processes xt from December 1959 to November 2019. Therefore, we

have N = 13, p = 79 and T = 720 in this illustration.

Table 2 presents some descriptive statistics of the macro predictors, including their

first-order sample autocorrelation coefficients ρ(1) over the entire sample period. As shown

in the table, nine predictors have a first-order sample autocorrelation coefficient higher

than 0.95, but four variables (inflation, long-term yield, corporate bond returns, and stock

variance) show little persistence. Therefore, we see that most of the variables are highly

persistent and can be used as the I(1) predictors in our model.

For the purpose of evaluating the forecasting performance of the proposed method,

we adopt the out-of-sample R2 measure commonly used in the literature regarding the

prediction of stock returns, see Gu, Kelly and Xiu (2020). At each time point, we define
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Table 2: Descriptive statistics of the macroeconomic predictors, and their first-order sample
autocorrelation coefficients over the entire sample period. The sample size is T = 720.

variable mean std min 25% 50% 75% max ρ(1)

D12 14.5619 13.4247 1.8667 3.6175 11.0988 19.5073 58.2406 0.9919
E12 34.2835 34.3074 3.0300 8.1850 18.1334 51.0358 139.4700 0.9921
b/m 0.4899 0.2565 0.1205 0.2872 0.4382 0.6395 1.2065 0.9937
tbl 0.0454 0.0316 0.0001 0.0229 0.0462 0.0612 0.1630 0.9904
AAA 0.0705 0.0263 0.0298 0.0488 0.0698 0.0856 0.1549 0.9943
BAA 0.0806 0.0287 0.0387 0.0566 0.0789 0.0960 0.1718 0.9952
lty 0.0631 0.0274 0.0163 0.0423 0.0598 0.0800 0.1482 0.9921
ntis 0.0100 0.0199 -0.0560 -0.0022 0.0130 0.0245 0.0512 0.9809
Rfree 0.0037 0.0026 0.0000 0.0018 0.0037 0.0050 0.0135 0.9719
infl 0.0030 0.0036 -0.0192 0.0007 0.0029 0.0050 0.0181 0.5700
ltr 0.0061 0.0291 -0.1124 -0.0104 0.0040 0.0228 0.1523 0.0310
corpr 0.0063 0.0257 -0.0949 -0.0071 0.0052 0.0191 0.1560 0.1077
svar 0.0021 0.0043 0.0001 0.0006 0.0011 0.0021 0.0709 0.4717

the out-of-sample R2 as

R2
OOS(t) = 1− ‖yt − (Âẑt−1 + Φ̂Pt−1)‖2

2

‖yt‖2
2

,

which differs from that in Gu, Kelly and Xiu (2020) by being a function of the time index

t, which denotes the forecasting origin.

Our empirical analysis works as follows. First, we divide the time span of 60 years

into two periods. The first period is the initial estimation period from January 1960 to

December 2010, and the second one is the testing period from January 2011 to December

2019. Specifically, we conduct the empirical test according to the following procedure,

which is similar to that commonly used in the asset pricing literature. At the beginning,

we use the data from January 1960 to December 2010 to estimate the coefficient matrices

A and Φ of the model (2.5), then predict the returns of the 79 stocks of January 2011

and calculate the out-of-sample R2 of the prediction. We then add the returns of January

2011 to the estimation period, and refit the model (2.5) with data from January 1960 to

January 2011 to obtain updated coefficient matrices. The updated model is used to predict

the returns of February 2011 with the model (2.5) and to calculate the out-of-sample R2

again. We repeat this estimation-prediction process by adding one-month returns to the

estimation period in each iteration until November 2019, which enables us to predict the

returns for December 2019. In addition, we choose the tuning parameters λA and λΦ

based on the procedure described in Section 2.4 but letting λA and λΦ be proportional to
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√
(p+N)/T and

√
log(p)/T , respectively. See Remark 2(ii).

For comparison, we consider some alternative models commonly seen in the literature

as benchmarks. The first benchmark is the naive VAR(d) model, that is,

yt = ΨPt−1 + et, t = 1, 2, . . . , T.

For each series of yt and the corresponding row of Ψ, we can treat the above equation as

a simple regression problem with dp explanatory variables and T observations. Therefore,

we may use the LS method to estimate each row of Ψ, then put them together to construct

an estimator of Ψ. We use the model in Koo et al. (2020) as another benchmark, where

the tuning parameter λ is fixed to log(p)

10
√
T

. Since the original model in Koo et al. (2020) is

developed for predicting a scalar time series, we apply their model with 13 macroeconomic

predictors described above to predict each stock separately, then stack the predictions

together to calculate the out-of-sample R2 for all 79 stocks. Our final benchmark is the

random walk model, in which we predict the returns of the next period using returns of

the current period. For a more comprehensive comparison, we conduct the experiment for

d = 1, 2 and 3, respectively, for the naive VAR, the RRSRA, and the IRRA models.

5.2 Prediction Performance of RRSRA

We evaluate the empirical performance of the RRSRA in this section. To begin, Figure 9

shows a time plot of the estimated number of common trends by the method described in

Section 2.3 in the testing period. The figure shows that, except for the first three months

of 2011 that may be affected by some economic crisis, the estimated number of common

trends within xt is four, which is fairly stable over the entire test period. Thus, we have

nine cointegrating vectors to produce the stationary process ẑt as a proxy of macroeconomic

predictors. Before analyzing the forecasting performance of these estimated ẑt variables,

we take a look at the number of parameters to be estimated in the two coefficient matrices

Â and Φ̂. Suppose that r̂ = 4, then there are 9 cointegrating vectors and hence, the matrix

Â has 79× 9 = 711 entries, and the matrix Φ̂ has 79× 79 = 6241 entries to be estimated,

both of which are relatively large. Therefore, we expect that the dimensions of the two

matrices can further be reduced to low-rank or sparse ones, which is commonly assumed

in the literature to avoid over-fitting and to produce better forecasting performance. For

this reason, we expect that the tuning parameters λA and λΦ in our framework should be
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relatively large to guarantee that the dimensions can be reduced.
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Figure 9: Time plot of r̂ obtained using all the data before the corresponding time point
on the horizontal axis.

Figure 10 shows the estimated rank of Â and the estimated number of non-zero entries

of Φ̂ for the proposed model with d = 1 at each prediction time point. The average rank

of Â is 1.97 and the average number of non-zero entries of Φ̂ is 5.88. Except for the first

three months in 2011, the estimated rank of Â is 2 in the estimation period. In addition,

Φ̂ has at most 13 non-zero entries at all time points, which is extremely small compared

to 6241 of the total number of entries. Overall, the proposed method provides an effective

way to reduce the number of parameters and the dimension of the coefficient matrices.
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Figure 10: The estimated rank of Â and the number of non-zero entries of Φ̂. The two
coefficient matrices are estimated with d = 1 using all the data prior to the time point.

Next we show the forecasting results in detail by following the method described in

Section 2.2 and the forecasting procedure mentioned above to evaluate the performance of

different models. Table 3 reports the overall comparisons of our proposed method against
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the three benchmarks mentioned before, in terms of R2
OOS. From Panels A and C of

Table 3, we see that the proposed RRSRA substantially outperforms the naive VAR model

(denoted by VAR(d)), the method of Koo et al. (2020) (denoted by Koo), and the random

walk model (denoted by RW). The mean of out-of-sample R2 of our method with d = 1

is 0.91% and the result is nearly the same for d = 2 or 3. We also note that our results

are slightly better than those in Gu, Kelly and Xiu (2020), where the highest monthly

out-of-sample R2 for all stocks is 0.40% among all machine learning methods considered

in their paper, and it is 0.70% for the top 1, 000 stocks and 0.47% for the bottom 1, 000

stocks by market values. In particular, the VAR model performs relatively poorly, as the

out-of-sample R2s with different lags all assume negative values with large magnitudes,

which are −22.54%, −41.08% and −87.81%, respectively. One possible reason is that

the number of parameters to be estimated in VAR models is significantly large and this

often leads to severe over-fitting, which in turn produces high variations in out-of-sample

forecasting. When the lag order d increases, the number of parameters also increases, so

the performance would further deteriorate. For the model in Koo et al. (2020), the results

in Table 3 imply that the Koo method has limited predictive power when forecasting the

returns of individual stocks. Finally, we see that the random walk model performs the

worst. In summary, the proposed model has marked advantages in prediction over the

three benchmark models considered.

To explore the in-sample goodness of fit, we apply all entertained models except the

random walk to the entire data set, and calculate the in-sample R2 at each time point.

The results over the time are shown in Table 4. As expected, the VAR model, which has

many more degrees of freedom than the others, produces the highest in-sample R2. Our

model and the one of Koo et al. (2020) provide a robust in-sample fit, and the result by

the Koo method is only slightly worse than those of the proposed models.

To check whether our model outperforms the benchmarks uniformly over the in-sample

and the out-of-sample periods, we plot the in-sample R2s and out-of-sample ones of the

RRSRA(1) model in Figures 11 and 12, respectively, where the time index is on the

horizontal axis. For a better illustration, the points in Figure 11 are the in-sample R2s

based on the data of each year from 1960 to 2019. In both figures, we also plot the VAR(1)

as a benchmark. An additional plot of the random walk model is also included in Figure 12

as another benchmark. Because the results produced by the Koo method in Koo et al.

(2020) are very close to ours, they are omitted. From Figure 11, we see that our method
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Table 3: Comparison of the RRSRA model, IRRA model and several benchmarks in terms
of out-of-sample R2. Panel A shows the results for RRSRA model with lag d = 1, 2, 3.
Panel B is the results for IRRA model, where we use both Algorithm 2 and ADMM method
in estimation, and with d = 1, 2, 3, respectively. Panel C reports several benchmark models,
including the naive VAR model with lag d = 1, 2, 3, the method in Koo et al. (2020)
denoted by Koo, and the random walk model denoted by RW. For each time point in the
test sample, we calculate the value of R2

OOS. The size of the test sample is 108− d+ 1 for
all models.

Out-of-sample R2(t) (in percentage)
mean std min 25% 50% 75% max

Panel A. Method (2.7) with different d
RRSRA(1) 0.91 18.73 -85.75 -6.42 4.61 13.25 31.45
RRSRA(2) 0.92 18.70 -85.76 -6.38 4.66 13.20 31.53
RRSRA(3) 0.90 18.83 -86.44 -6.32 4.67 13.33 31.78

Panel B. Method (2.8) with different d, fitted using both iterative method
and ADMM method
Iterative(1) 0.75 18.29 -80.36 -6.77 4.79 13.09 30.90
Iterative(2) 0.66 18.39 -76.71 -7.01 3.96 13.18 29.99
Iterative(3) 0.59 18.53 -77.88 -7.71 4.21 13.66 28.77
ADMM(1) 0.80 18.18 -79.28 -6.57 4.83 13.11 30.61
ADMM(2) 0.65 18.38 -76.52 -7.01 3.96 13.16 30.03
ADMM(3) 0.60 18.53 -77.87 -7.67 4.11 13.66 29.13

Panel C. Benchmark models
VAR(1) -22.54 31.23 -133.10 -34.86 -18.96 0.05 24.27
VAR(2) -41.08 49.96 -344.47 -65.06 -31.93 -12.30 37.23
VAR(3) -87.81 97.26 -797.91 -117.46 -66.46 -35.08 46.18
Koo -5.23 21.67 -91.40 -17.98 -0.53 11.32 26.52
RW -127.08 117.45 -665.03 -163.63 -111.06 -49.64 37.24
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Table 4: In-sample R2 of method (2.7), method (2.8) and some benchmarks. The three
models in Panel A are the RRSRA model with lag d = 1, 2, 3. Panel B shows the results
for IRRA, where we use both iterative method and ADMM method in estimation with
d = 1, 2, 3, respectively. Panel C reports some benchmark models, that is, the naive VAR
model with d = 1, 2, 3, the method in Koo et al. (2020) denoted by Koo, and the random
walk model denoted by RW. We fit each model with the entire data set and obtain fitted
values for returns of individual stocks, then calculate R2 at each time point. The sample
size is 719− d+ 1 for all models.

In-sample R2 (in percentage)
mean std min 25% 50% 75% max

Panel A. Method (2.7) with different d
RRSRA(1) 1.53 16.02 -68.32 -9.36 3.80 13.40 42.66
RRSRA(2) 1.52 15.99 -68.44 -9.37 3.77 13.32 42.47
RRSRA(3) 1.55 16.04 -68.63 -9.29 3.75 13.42 42.63

Panel B. Method (2.8) with different d, fitted using both iterative
method and ADMM method
Iterative(1) 1.61 16.00 -68.16 -8.95 3.85 13.25 43.03
Iterative(2) 1.58 15.99 -65.52 -8.84 3.89 13.27 43.42
Iterative(3) 1.71 16.03 -65.41 -9.10 3.81 13.40 42.95
ADMM(1) 1.59 15.98 -67.62 -8.99 3.91 13.25 42.84
ADMM(2) 1.58 15.97 -65.14 -8.87 3.92 13.26 43.34
ADMM(3) 1.69 16.01 -65.19 -8.96 3.78 13.33 42.98

Panel C. Several benchmark models
VAR(1) 8.10 24.69 -137.87 -3.87 11.85 25.34 69.86
VAR(2) 15.96 30.09 -121.38 0.80 20.39 37.38 84.32
VAR(3) 24.69 35.48 -303.66 9.14 30.57 48.35 89.87
Koo -1.13 16.30 -48.29 -14.18 2.03 12.90 34.17
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fits the data relatively poorly compared to the VAR model in most years according to

the in-sample R2. This is understandable since the VAR model fits the data via the LS

method to minimize the squared distance between the fitted values and the true ones,

while our method adopts regularization, which often introduces some in-sample biases in

order to provide more stable predictions in out-of-samples. Furthermore, Figure 12 shows

that our method produces more robust predictions than the VAR and the random walk

model, and outperforms them over most of the time points based on the out-of-sample R2.

This illustrates the predictive advantages of using the proposed method.
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Figure 11: In-sample R2 for the VAR(1) model and our method with d = 1. We use the
entire data set in estimation and calculate the in-sample R2 using the data of each year
from 1960 to 2019.
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Figure 12: Out-of-sample R2 for the proposed model with d = 1, the VAR(1) model and
the random walk model. For each time point in the test period, we fit each model using
the data prior to that time point, make predictions for the returns, and calculate the
out-of-sample R2 of the predictions.
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5.3 Prediction Performance of IRRA

In this section, we evaluate the predictive performance of IRRA models described in

Section 2.2.2. The procedure of estimating the factor model (2.2) and obtaining zt are

exactly the same as those in Section 5.2. With the estimated ẑt, we fit the data via (2.8)

using both iterative method and ADMM method, and evaluate its predictive performance.

We expect that the results of IRRA are close to those of RRSRA, because the tuning

parameter λΦ selected by a grid search is relatively large in both models. When the tuning

parameter λΦ in both methods tends to infinity, the estimated coefficients obtained by the

two algorithms tend to be the same.

We first examine the estimated coefficient matrices. Figure 13 shows the rank of Â and

Φ̂ estimated by Algorithm 2 in the case of d = 1 at each time point. We find that the rank

of Â is reduced to 1 or 2 over the entire time horizon, which is the same as that of the

RRSRA, implying that the efficient cointegration rank is low in this particular application.

In addition, the rank of Φ̂ is also 1 or 2 over time.
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Figure 13: The estimated rank of Â and the rank of Φ̂. The two coefficient matrices are
estimated by Algorithm 2 with d = 1 at each time point using all the data prior to it.

Panel B of Table 3 shows the predictive performance of (2.8), where the coefficients

are estimated by both Algorithm 2 and the ADMM method with d = 1, 2, 3, respectively.

All six results are positive and close to each other. They are also close to, but a little

worse than, those of RRSRA. One possible reason is that both IRRA and RRSRA are

constrained regressions but the latter one produces sparse solutions and reduces the model

complexity more substantially compared to the low-rank structures. Similarly to the

conclusion of the RRSRA procedure, the R2
OOS results of (2.8) also outperform those of

the benchmarks.

35



Finally, we see that the performance of IRRA is close to that of RRSRA not only with

respect to the out-of-sample R2, but also with respect to the in-sample R2; see Tables 3

and 4. Panel B of Table 4 shows the in-sample R2 results for IRRA, with all six estimation

settings. Once again, we find that the results are close to those in Panel A, but IRRA

fits the data slightly better, which may be a consequence of higher degrees of freedom in

IRRA.

6 Concluding Remarks

Finding proper cointegration relationships is an important topic in Econometrics and

Statistics, yet the interpretation of cointegrating structures might become complicated if the

dimension of the system under study is high. This paper introduced the concept of effective

cointegration rank and considered a new method to identify the important cointegration

relationships among a high-dimensional I(1) series from a predictive perspective. In a

nutshell, the effective cointegration rank is the number of cointegrating relationships that

can produce useful predictors in a given forecasting application. The proposed method

consists of a two-step estimation procedure, where we first use the Principal Component

Analysis to estimate the common stochastic trends of the I(1) series and to identify all

possible cointegrating vectors. We then employ all stationary series obtained via the

cointegrating vectors and some lagged values of dependent variables to form predictors

of the second-step estimation. A reduced-rank regression technique is applied to the

co-integrated predictors and the dimension of relevant cointegrating vectors is defined as

the effective cointegration rank. We also applied the LASSO penalty or reduced rank

constraints to the coefficients of the lagged variables in the second step, and an iterative

procedure is proposed to estimate the unknown coefficients.

Our proposed method has a wide range of applications in many scientific areas, including

Economics, Finance, and Environmental studies, because it is common in these areas to

use nonstationary variables or factors to predict stationary series in empirical applications.

We applied the proposed method to the problem of predicting cross-sectional stock returns,

and illustrated clearly the predictive advantages of the proposed procedure over some

commonly used benchmarks available in the literature.
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Appendices

In this supplement, we provide proofs of all theorems stated in Section 3 of the main

article. We use c or C to denote a generic positive constant, its value may change for

different places.

Appendix A Proof of Theorems

A.1 Proofs of Theorem 1 and 2

To begin, we first introduce a useful lemma, which is commonly seen in matrix perturbation

theory. See Golub and Van Loan (2013) (Theorem 8.1.10), Johnstone and Lu (2009), and

Lam, Yao and Bathia (2011), among others.

Lemma A1. Suppose A and A + E are n × n symmetric matrices, and Q = [Q1 Q2],

with Q1 ∈ Rn×r and Q2 ∈ Rn×(n−r), is an n× n orthogonal matrix such that range(Q1) is

an invariant subspace for A. Partition the matrices Q′AQ and Q′EQ as follows:

Q′AQ =

Q′1AQ1 0

0 Q′2AQ2

 and Q′EQ =

Q′1EQ1 Q′1EQ2

Q′2EQ1 Q′2EQ2

 .
If sep(Q′1AQ1,Q

′
2AQ2) = minµ∈λ(Q′1AQ1),ν∈λ(Q′2AQ2) |µ− ν| > 0, where λ(M) denotes

the set of eigenvalues of matrix M, and

‖E‖F ≤
1

5
sep(Q′1AQ1,Q

′
2AQ2),

then there exists a matrix P ∈ R(n−r)×r with

‖P‖F ≤
4

sep(Q′1AQ1,Q′2AQ2)
‖Q′1EQ2‖F

such that the columns of Q̂1 = (Q1 + Q2P)(Ir + P′P)−1/2 define an orthonormal basis for

a subspace that is invariant for A + E.

Proof of Theorem 1. From (2.2), we have the identity

Σ̂x = BΣ̂fB
′ + BΣ̂fε + Σ̂εfB

′ + Σ̂ε,
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where Σ̂x = T−1
∑T

t=1 xtx
′
t, Σ̂f = T−1

∑T
t=1 ftf

′
t , Σ̂fε = T−1

∑T
t=1 ftε

′
t, Σ̂εf = T−1

∑T
t=1 εtf

′
t ,

Σ̂ε = T−1
∑T

t=1 εtε
′
t. The sample means x̄, f̄ , and ε̄ are set to 0, because we assume the

data Xt are properly centered in advance.

By Assumption 4, we have

‖Σ̂x −BΣ̂fB
′‖2 ≤2‖B‖2‖Σ̂fε‖2 + ‖Σ̂ε −Σε‖2 + ‖Σε‖2

=Op(N) +Op(NT
−1/2) +Op(1)

=Op(N),

Because [B Bc] is an orthogonal matrix, we have

B′

B′c

(BΣ̂fB
′
) [

B Bc

]
=

Σ̂f 0

0 0

 ,
B′

B′c

(Σ̂x −BΣ̂fB
′
) [

B Bc

]
=

B′Σ̂xB− Σ̂f B′Σ̂xBc

B′cΣ̂xB B′cΣ̂xBc

 .
By Theorem 1 in Peña and Poncela (2006) and Assumptions 3 and 4, we can show

that sep(Σ̂f ) = λr(Σ̂f ) > CNT almost surely for some constant C > 0. By Lemma

A1, there is an (N − r) × r matrix P with an upper bounded ‖P‖2, such that B̂ =

(B + BcP)(Ir + P′P)−1/2 defines an orthonormal basis for a subspace that is invariant for

Σ̂x. Therefore,

‖B̂−B‖2 ≤‖B
(
Ir − (Ir + P′P)−1/2

)
‖2 + ‖BcP(Ir + P′P)−1/2‖2

≤2‖P‖2

≤ 8

λr(Σ̂f )
‖B′(Σ̂x −BΣ̂fB

′)‖2

=Op(T
−1).

A similar result also holds for ‖B̂c −Bc‖2 as we can exchange the position of B and

Bc in the orthogonal matrix [B,Bc], and apply the same argument as above again.

42



Consequently, we have

‖BB′ − B̂B̂′‖2 =‖(B− B̂)B′ + B̂(B− B̂)′‖2

≤‖B− B̂‖2(‖B‖2 + ‖B̂‖2)

=Op(T
−1).

Furthermore, from a least-squares perspective in (2.6), the factors are estimated as

f̂t = B̂′xt = B̂′(Bft + ε). Then,

‖B̂f̂t −Bft‖2 =‖B̂B̂′Bft + B̂B̂′εt −Bft‖2

≤‖B̂B̂′(B− B̂)ft‖2 + ‖(B̂−B)ft‖2 + ‖B̂B̂′εt‖2

≤2‖(B̂−B)ft‖2 + ‖B̂′εt‖2

=Op(
√
N/T ) +Op(1),

where the last line follows from the fact that ‖ft‖2 = ‖
∑t

s=1 ut‖2 = Op(
√
NT ) and B̂′ε is

an r-dimensional random vector with finite variance. Therefore,

N−1/2‖B̂f̂t −Bft‖2 = Op(N
−1/2 + T−1/2).

This completes the proof. �

Proof of Theorem 2. For any column vector b̂ in B̂c, denote its corresponding true one

by b. Then,

b̂′Xt = b̂′Bft + b̂′εt = (b̂− b)′Bft + (b̂− b)′εt + b′εt.

By a similar argument as the proof of theorem 4 in Gao and Tsay (2021), the autocorrela-

tions of b̂Xt will only depend on those of the third terms if the magnitudes of the first

two terms are asymptotically negligible. Therefore, we only need to show

max
1≤t≤T

|(b̂− b)′Bft| = oP (1),

as the second term is obviously dominated by the third one according to Theorem 1. Note
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that ft has an additional strength of order
√
N , and Model (2.3) implies that

ft =
t∑
i=1

ui,

is a partial sum of weakly dependent variables. Under Assumptions 1–4, we see that the

conditions for Theorem 1 of Merlevède, Peligrad and Rio (2011) hold. By aforementioned

Theorem 1 or the proof of Theorem 2 in Gao and Tsay (2021), we can show that

max
1≤t≤T

|(b̂− b)′Bft| ≤‖b̂− b‖2 max
1≤t≤T

‖Bft‖2

≤CT−1
√
NT 1/2 log(T )

≤CN1/2 log(T )T−1/2.

Therefore, it suffices to require N1/2 log(T )T−1/2 = o(1). This completes the proof. �

Appendix B Proof of Theorem 3

Recall the SVD of any m×n matrix Θ in (3.5), the subspaces in (3.6) and the decomposition

of any m×n matrix M in (3.7). When M = Θ, we obviously have ‖M‖∗ = ‖M1‖∗+‖M2‖∗.

In addition, for the decomposition of a general matrix M that may be different from Θ,

we introduce the following lemma.

Lemma A2. Given the SVD of Θ in (3.5), for any matrix M ∈ Rm×n, the decomposition

‖Θ1 + M2‖∗ = ‖Θ1‖∗ + ‖M2‖∗

holds.

Proof. Given the SVD of Θ in (3.5), we have

‖Θ1 + M2‖∗ =

∥∥∥∥∥∥
Dk 0

0 U′k,cMVk,c

∥∥∥∥∥∥
∗

=
∥∥∥[Dk

]∥∥∥
∗

+
∥∥∥[U′k,cMVk,c

]∥∥∥
∗

=‖Θ1‖∗ + ‖M2‖∗. �
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Lemma A3. Let the conditions of Theorem 3 hold. As N, p, T →∞,

1

2T
‖∆AẐ + ∆ΦP‖2

F ≥ C1κ1‖∆‖2
F − C2τTΨ2(∆),

with probability tending to 1, where Ψ is defined in (3.2) and ∆ = [∆A,∆Φ].

Proof. Note that

‖∆AZ + ∆ΦP‖2
F =‖∆AẐ + ∆ΦP + ∆A(Z− Ẑ)‖2

F

≤2
(
‖∆AẐ + ∆ΦP‖2

F + ‖∆A(Z− Ẑ)‖2
F

)
,

we have

1

2T
‖∆AẐ + ∆ΦP‖2

F ≥
1

4T
‖∆AZ + ∆ΦP‖2

F −
1

2T
‖∆A(Z− Ẑ)‖2

F. (B.1)

We consider the last term on the right-hand side of the above inequality,

1

2T
‖∆A(Z− Ẑ)‖2

F ≤
1

2T
‖∆A‖2

F‖Z− Ẑ‖2
2 =

1

2T
‖∆A‖2

F‖(Bc − B̂c)
′X‖2

2,

where we used the inequality ‖MN‖F ≤ ‖M‖2‖N‖F. Notice that

‖X‖2
F =

T∑
t=1

tr(xtx
′
t) =

T∑
t=1

(f ′tft + 2f ′tB
′εt + ε′tεt).

By Assumptions 2 and 4, we have
∑T

t=1(f
′
tft) = Op(NT

2),
∑T

t=1(2f ′tB
′εt) = Op(NT ),

and
∑T

t=1(ε′tεt) = Op(N
√
T ). Then, by the results in Theorem 1,

1

2T
‖∆A(Z− Ẑ)‖2

F ≤ ‖∆A‖2
F‖Bc − B̂c‖2

2

1

2T
‖X‖2

F = ‖∆A‖2
FOp

(
N

T

)
= op(‖∆A‖2

F),

under the assumption that N/T → 0. It follows from (B.1) and the above rate that

1

2T
‖∆AẐ + ∆ΦP‖2

F ≥
1

4T
‖∆AZ + ∆ΦP‖2

F − op(‖∆A‖2
F).
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By the RSC condition specified in Theorem 3, we have

1

2T
‖∆AẐ + ∆ΦP‖2

F ≥
1

4T
‖∆AZ + ∆ΦP‖2

F − op(‖∆A‖2
F)

≥ C1κ1‖∆‖2
F − C2τTΨ2(∆)− op(‖∆A‖2

F)

≥ C1κ1‖∆‖2
F − C2τTΨ2(∆),

where we assume κ1 > 0 in the last step. This completes the proof. �

Proof of Theorem 3. Let

Loss1(A,Φ) =
1

2T
‖Y −AẐ−ΦP‖2

F + λA‖A‖∗ + λΦ‖vec(Φ)‖1

be the loss function defined in (2.7). Because the solutions Â and Φ̂ are obtained by

solving the minimization problem

Â, Φ̂ = arg min
A,Φ

Loss1(A,Φ),

implying that

Loss1(Â, Φ̂) ≤ Loss1(A,Φ),

where A and Φ are the corresponding true ones. Recall that ∆A = Â−A and ∆Φ = Φ̂−Φ,

it follows from the above inequality that

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F ≤
1

T
〈E,∆AẐ + ∆ΦP〉+

1

2T
‖A(Ẑ− Z)‖2

F

+ λA(‖A‖∗ − ‖A + ∆A‖∗)

+ λΦ(‖vec(Φ)‖1 − ‖vec(Φ + ∆Φ)‖1)

=
1

T
〈E,∆AZ + ∆ΦP〉+

1

T
〈E,∆A(Ẑ− Z)〉

+
1

2T
‖A(Ẑ− Z)‖2

F + λA(‖A‖∗ − ‖A + ∆A‖∗)

+ λΦ(‖vec(Φ)‖1 − ‖vec(Φ + ∆Φ)‖1).

(B.2)

46



Notice that the second term of the right-hand side of (B.2) satisfies

1

T
〈E,∆A(Ẑ− Z)〉 ≤ 1

T
‖∆A‖∗‖(Ẑ− Z)E′‖2

≤ 1

T
‖∆A‖∗‖(B̂c −Bc)

′B‖2

∥∥∥ T∑
t=1

fte
′
t

∥∥∥
2

+
1

T
‖∆A‖∗‖B̂c −Bc‖2

∥∥∥ T∑
t=1

εte
′
t

∥∥∥
2

=Op

(√
p

T 3
+

√
pN

T 3

)
‖∆A‖∗

=op(1)‖∆A‖∗,

and under the assumption of ‖A‖2 = Op(1), the third term in the right-hand side of (B.2)

satisfies

1

2T
‖A(Ẑ− Z)‖2

F ≤
1

2T
‖A‖2

2‖B̂c −Bc‖2
2‖X‖2

F = Op

(
N

T

)
‖A‖2

2 = op(1). (B.3)

Therefore, with probability tending to 1, (B.2) implies that

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F

≤ 1

T
‖∆A‖∗‖EZ′‖2 +

1

T
‖vec(∆Φ)‖1‖vec (EP′)‖∞ + op(1)‖∆A‖∗ + op(1)

+ λA(‖A‖∗ − ‖A + ∆A‖∗) + λΦ(‖vec(Φ)‖1 − ‖vec(Φ) + ∆Φ‖1)

≤1

2
λA (‖∆A‖∗ + 2‖A‖∗ − 2‖∆A + A‖∗)

+
1

2
λΦ (‖vec(∆Φ)‖1 + 2‖vec(Φ)‖1 − 2‖vec(∆Φ + Φ)‖1) ,

(B.4)

where we use the condition that λA ≥
3

T
‖EZ′‖2 and λΦ ≥

2

T
‖vec (EP′)‖∞ in the second

inequality.

Let ∆A,2 = ΠS⊥A(rA)(∆A) be the projection of ∆A onto S⊥A(rA), where rA = rank(A).

Then we have the decomposition ∆A = ∆A,1 + ∆A,2, as discussed at the beginning of the

Section B. Similarly, we can decompose A as A = A1 + A2, where A2 = ΠS⊥A(rA)(A) = 0.
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Then,

‖∆A‖∗ + 2‖A‖∗ − 2‖∆A + A‖∗

=‖∆A,1 + ∆A,2‖∗ + 2‖A1‖∗ − 2‖∆A,1 + ∆A,2 + A1‖∗

≤‖∆A,1‖∗ + ‖∆A,2‖∗ + 2‖A1‖∗ − 2‖∆A,2 + A1‖∗ + 2‖∆A,1‖∗

=3‖∆A,1‖∗ − ‖∆A,2‖∗,

(B.5)

where the last line comes from Lemma A2.

Let SΦ be the support set of Φ, that is, the set of the indexes of the nonzero elements

in Φ, and sΦ = card(SΦ). For ∆Φ, use the decomposition ∆Φ = ∆Φ,1 + ∆Φ,2, where

the entries of ∆Φ,1 can only be non-zero in the positions in SΦ, and the entries of ∆Φ,2

can only be non-zero in the complement set of SΦ. Similarly, we can decompose Φ as

Φ = Φ1 + Φ2, and it is not hard to see that Φ2 = 0.

By a similar argument as (B.5), we have

‖vec(∆Φ)‖1 + 2‖vec(Φ)‖1 − 2‖vec(∆Φ + Φ)‖1

=‖vec(∆Φ,1) + vec(∆Φ,2)‖1 + 2‖vec(Φ1)‖1 − 2‖vec(∆Φ,1 + ∆Φ,2 + Φ1)‖1

≤‖vec(∆Φ,1)‖1 + ‖vec(∆Φ,2)‖1 + 2‖vec(Φ1)‖1 − 2‖vec(∆Φ,2 + Φ1)‖1

+ 2‖vec(∆Φ,1)‖1

=3‖vec(∆Φ,1)‖1 − ‖vec(∆Φ,2)‖1.

(B.6)

By (B.5) and (B.6), the right-hand side of (B.4) can be upper bounded by

1

2
λA (3‖∆A,1‖∗ − ‖∆A,2‖∗) +

1

2
λΦ (3‖vec(∆Φ,1)‖1 − ‖vec(∆Φ,2)‖1) , (B.7)

which also implies that

1

2
λA (3‖∆A,1‖∗ − ‖∆A,2‖∗) +

1

2
λΦ (3‖vec(∆Φ,1)‖1 − ‖vec(∆Φ,2)‖1) ≥ 0.

Now we turn to the left-hand side of (B.2). Notice that

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F ≥
1

4T
‖∆AẐ + ∆ΦP‖2

F −
1

2T
‖A(Ẑ− Z)‖2

F,
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it follows from B.3 and Lemma A3 that

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F ≥C1κ1(‖∆A‖2
F + ‖∆Φ‖2

F)

− C2(λA‖∆A‖∗ + λΦ‖vec(∆Φ)‖1)2,

(B.8)

where the last term on the right-hand side in the parentheses satisfies

λA‖∆A‖∗ + λΦ‖vec(∆Φ)‖1 ≤λA(‖∆A,1‖∗ + ‖∆A,2‖∗)

+ λΦ(‖vec(∆Φ,1)‖1 + ‖vec(∆Φ,2)‖1)

≤4(λA‖∆A,1‖∗ + λΦ‖vec(∆Φ,1)‖1)

≤4(λA

√
2rA‖∆A,1‖F + λΦ

√
sΦ‖∆Φ,1‖F)

≤4(λA

√
2rA‖∆A‖F + λΦ

√
sΦ‖∆Φ‖F),

where we use the inequality rank(∆A,1) ≤ 2rA. Under the assumptions that κ1 ≥

C0λ
2
ArAτT and κ1 ≥ C0λ

2
ΦsΦτT for some C0 > 0, it follows that

τTΨ2(∆) ≤ 1

4
C0τT (rAλ

2
A‖∆A‖2

F + sΦλ
2
Φ‖∆Φ‖2

F) ≤ 1

4
κ1(‖∆A‖2

F + ‖∆Φ‖2
F).

Therefore, (B.8) implies that

1

2T
‖∆AZ + ∆ΦP‖2

F ≥
1

4
κ1(‖∆A‖2

F + ‖∆Φ‖2
F).

By (B.7) and the above inequality,

1

4
κ1(‖∆A‖2

F + ‖∆Φ‖2
F) ≤1

2
λA (3‖∆A,1‖∗ − ‖∆A,2‖∗)

+
1

2
λΦ (3‖vec(∆Φ,1)‖1 − ‖vec(∆Φ,2)‖1)

≤3

2
(λA

√
2rA‖∆A‖F + λΦ

√
sΦ‖∆Φ‖F)

≤3

2

√
2rAλ2

A + λ2
ΦsΦ

√
‖∆A‖2

F + ‖∆Φ‖2
F.

Dividing both sides by
√
‖∆A‖2

F + ‖∆Φ‖2
F, we obtain

‖∆A‖2
F + ‖∆Φ‖2

F ≤ C(rAλ
2
A + sΦλ

2
Φ)/κ2

1.
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This completes the proof. �

Appendix C Proof of Theorem 4

We now provide a proof of Theorem 4, which is similar to the proof of Theorem 3 but with

adjustments for different regularizations and different conditions.

Proof of Theorem 4. Let

Loss2(A,Φ) =
1

2T
‖Y −AẐ−ΦP‖2

F + λA‖A‖∗ +
d∑
i=1

λi‖Φi‖∗.

Then following Loss2(Â, Φ̂) ≤ Loss2(A,Φ), we can obtain a similar result as (B.2) and

(B.4), that is, with probability tending to 1,

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F ≤
1

T
〈E,∆AZ + ∆ΦP〉+

1

T
〈E,∆A(Ẑ− Z)〉

+
1

2T
‖A(Ẑ− Z)‖2

F + λA(‖A‖∗ − ‖A + ∆A‖∗)

+
d∑
i=1

λi(‖∆Φi
‖∗ − ‖Φi + ∆Φi

‖∗)

≤ 1

T
‖∆A‖∗‖EZ′‖2 +

1

T

d∑
i=1

‖∆Φi
‖∗‖ELi(Y)′‖2

+ op(1)‖∆A‖∗ + op(1) + λA(‖A‖∗ − ‖A + ∆A‖∗)

+
d∑
i=1

λi(‖∆Φi
‖∗ − ‖Φi + ∆Φi

‖∗)

≤1

2
λA(‖∆A‖∗ + 2‖A‖∗ − 2‖∆A + A‖∗)

+
1

2

d∑
i=1

λi(‖∆Φi
‖∗ + 2‖Φi‖∗ − 2‖∆Φi

+ Φi‖∗),

(C.1)

where we use the condition λA ≥
3

T
‖EZ′‖2 and λi ≥

2

T
‖ELi(Y)′‖2 in the last inequality.

Again, we decompose ∆A as that in the proof of Theorem 3, and decompose ∆Φi
as

∆Φi
= ∆Φi,1 + ∆Φi,2, i = 1, . . . , d, where ∆Φi,2 = ΠS⊥Φi

(rΦi
)(∆Φi

). Then, by a similar
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argument as (B.5), the right-hand side of the (C.1) has an upper bound

1

2
λA(3‖∆A,1‖∗ − ‖∆A,2‖∗) +

1

2

d∑
i=1

λi(3‖∆Φi,1‖∗ − ‖∆Φi,2‖∗), (C.2)

which also implies that ∆ is in the restricted set C defined in (3.8). Furthermore, by the

RE condition defined in Assumption 6, the left-hand side of (C.1) has a lower bound, that

is,

1

2T
‖∆AẐ + ∆ΦP + A(Ẑ− Z)‖2

F ≥
1

4T
‖∆AẐ + ∆ΦP‖2

F −
1

2T
‖A(Ẑ− Z)‖2

F

≥ 1

8T
‖∆AZ + ∆ΦP‖2

F −
1

4T
‖∆A(Ẑ− Z)‖2

F

− 1

2T
‖A(Ẑ− Z)‖2

F

≥ 1

8T
‖∆AZ + ∆ΦP‖2

F − op(1)

≥Cκ2(‖∆A‖2
F +

d∑
i=1

‖∆Φi
‖2

F).

Then by (C.2) and the above inequality,

Cκ2

(
‖∆A‖2

F +
d∑
i=1

‖∆Φi
‖2

F

)
≤1

2
λA(3‖∆A,1‖∗ − ‖∆A,2‖∗)

+
1

2

d∑
i=1

λi(3‖∆Φi,1‖∗ − ‖∆Φi,2‖∗)

≤3

2

(
λA

√
2rA‖∆A‖F +

d∑
i=1

λi
√

2rΦ,i‖∆Φi
‖F

)

≤3

2

√√√√2rAλ2
A + 2

d∑
i=1

rΦi
λ2
i

√√√√‖∆A‖2
F +

d∑
i=1

‖∆Φi
‖2

F.

Therefore,

‖∆A‖2
F +

d∑
i=1

‖∆Φi
‖2

F ≤ C

(
rAλ

2
A +

d∑
i=1

rΦi
λ2
i

)
/κ2

2.

This completes the proof. �
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