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Abstract

This paper introduces a flexible time-varying network vector autoregressive model frame-
work for large-scale time series. A latent group structure is imposed on the heterogeneous
and node-specific time-varying momentum and network spillover effects so that the number
of unknown time-varying coefficients to be estimated can be reduced considerably. A classic
agglomerative clustering algorithm with nonparametrically estimated distance matrix is com-
bined with a ratio criterion to consistently estimate the latent group number and membership.
A post-grouping local linear smoothing method is proposed to estimate the group-specific
time-varying momentum and network effects, substantially improving the convergence rates
of the preliminary estimates which ignore the latent structure. We further modify the method-
ology and theory to allow for structural breaks in either the group membership, group number
or group-specific coefficient functions. Numerical studies including Monte-Carlo simulation
and an empirical application are presented to examine the finite-sample performance of the
developed model and methodology.
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1 Introduction

Modeling large-scale time series has been the main frontier of recent advances of time series anal-
ysis and is of fundamental importance in various fields of applications such as climatology, eco-
nomics, finance and social networks. Since Sims (1980)’s seminal work, the vector autoregressive
(VAR) model has become a commonly-used statistical tool to tackle multivariate time series, see
Lütkepohl (2006) and Kilian and Lütkepohl (2017) for a comprehensive review of classic estima-
tion and forecasting techniques. However, the VAR-based estimation and forecasting are chal-
lenging when the number of time series sequences N diverges to infinity. In this case, the number
of unknown parameters in VAR transition matrices is of order O(N2), which may be substantially
larger than the time series length T . In order to construct sensible estimate and forecast, two
dimension-reduction approaches are often employed: VAR with sparse transition matrices and
regularised estimation (e.g., Song & Bickel 2011, Bonhomme & Manresa 2015, Kock & Callot 2015,
Davis, Zang & Zheng 2016, Miao, Phillips & Su 2023) and factor-augmented VAR (e.g., Bernanke,
Boivin & Eliasz 2005, Bai & Ng 2006, Bai, Li & Lu 2016). Although some sound asymptotic prop-
erties have been developed for the sparse or factor-augmented VAR estimates, they often neglect
possible network structures in large-scale time series and cannot directly capture dynamic net-
work effects.

Consider time series observation vectors Xt = (x1,t, · · · , xN,t)
⊺

with N being the number of
nodes in the large-scale network, and denote an adjacency matrix by W = (wij)N×N, where wii =

0, wij = 1 for i ̸= j if there exists a directed edge from i to j and wij = 0 otherwise. The matrix W
is assumed to be observable and can be either directed (W⊺ ̸= W) or undirected (W⊺

= W). The
classic network VAR model is defined by

xi,t = β1

∑
j̸=i

w̃ijxj,t−1 + β2xi,t−1 + εi,t, i = 1, · · · ,N, (1.1)

where w̃ij = wij/ni with ni =
∑

j̸=i wij, β1 and β2 are unknown parameters, and εt = (ε1,t, · · · , εN,t)
⊺

is a sequence of independent and identically distributed (i.i.d.) random vectors. The above
network VAR model formulation contains two regression components: β1

∑
j̸=i w̃ijxj,t−1 and

β2xi,t−1, corresponding to the network (cross-lag) and momentum (own-lag) effects, respectively.
Zhu et al (2017) discuss stationarity conditions for an extended network VAR model with extra
nodal effects, propose the least squares estimation method and derive the relevant asymptotic
theory. Although the classic linear network VAR model is easy to interpret and implement, it
may be invalid in empirical applications. In particular, there exist two practical issues: (i) the
stable network VAR model cannot capture smooth structural changes in the underlying data gen-
erating process over a long time span; and (ii) it is often too restrictive to impose the homogeneity
assumption on the autoregressive coefficients over N nodes. Consequently, the homogenous lin-
ear network VAR (1.1) may suffer from the model misspecification problem, resulting in biased
estimates, inaccurate forecast and misleading inference. There have been some attempts in recent
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years to address one of the aforementioned two issues. To incorporate structural changes in the
autoregressive structures, Sun (2016), Sun & Malikov (2018), Wu (2019), Chen et al (2023) and Yin,
Safikhani & Michailidis (2024) extend the linear network VAR models, allowing the coefficients
to vary smoothly over time or with a stationary index variable. On the other hand, to relax the
homogeneity restriction in linear VAR models, Yin, Safikhani & Michailidis (2023, 2024) introduce
fully heterogenous network VAR models with the momentum and network spillover effects vary-
ing over nodes. However, the number of unknown coefficients in the latter models grow with the
number of nodes, resulting in slow estimation convergence when the time span is not sufficiently
long.

This paper aims to jointly tackle the aforementioned two issues by introducing a general time-
varying network VAR model framework satisfying a latent group structure, i.e., the time-varying
network autoregressive relationships are invariant within a group of nodes, but change over dif-
ferent groups. The grouped time-varying network VAR model achieves a good balance between
model flexibility and parsimony. It not only covers the homogenous network VAR models (Zhu
et al 2017, Wu 2019) as a special case, but also provides a more parsimonious model formula-
tion than the fully heterogenous network VAR models (Yin, Safikhani & Michailidis 2023, 2024),
achieving dimension reduction in estimation and improving the subsequent out-of-sample fore-
casting performance. The main methodological and theoretical contributions of our paper with
connection to the existing literature are summarized as follows.

• General network VAR model framework with a latent group structure on time-varying momentum
and network spillover effects. There has been increasing interest in recent years to explore a
group structure under the classic stable VAR or network VAR model framework. For exam-
ple, Zhu & Pan (2020) introduce a grouped linear network VAR model via a mixture Gaus-
sian distribution and use an EM estimation algorithm; Guðmundsson & Brownlees (2021)
propose a stochastic block VAR model and detect a latent group structure on the network
spillover effects; Chen, Fan & Zhu (2023) study a community network VAR model and allow
network effects to vary over different communities; and Zhu, Xu & Fan (2023) introduce a
least squares algorithm to simultaneously estimate the parameters and identify the group
structure for heterogeneous network VAR models. In this paper, we relax the somehow re-
stricted stable model assumption in the aforementioned literature, allowing for structural
changes in the underlying data generating process, a typical dynamic feature for large-scale
network time series collected over a long time span. With the latent group structure, we sub-
stantially reduce the number of unknown coefficient functions for momentum and network
spillover effects, which is appealing when the model is applied to the out-of-sample pre-
diction. As in Zhu, Xu & Fan (2023), we allow the time-varying network effects to depend
on both the sender and receiver’s group information, resulting in a further homogeneity
structure over the network effects.

• Easy-to-implement clustering algorithm and post-grouping nonparametric estimation. Since nei-
ther the group number nor membership is known a priori, we combine a classic agglom-
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erative clustering algorithm and a simple ratio criterion to consistently estimate the group
structure. With the nonparametrically estimated distance matrix, we may directly adopt a
standard package in the computing software to implement the cluster analysis. The three-
stage procedure introduced in Section 3.1 does not require iterative computation (e.g., Bon-
homme & Manresa 2015, Zhu, Xu & Fan 2023) to obtain consistent group membership es-
timates. The developed clustering methodology complements recent developments on la-
tent group estimation in the context of large panel data (e.g., Bonhomme & Manresa 2015,
Ke, Li & Zhang 2016, Su, Shi & Phillips 2016, Ando & Bai 2017, Vogt & Linton 2017, 2020,
Chen 2019). However, since the underlying high-dimensional time series process is locally
stationary, it is technically more challenging to derive the asymptotic property of the de-
veloped methodology. To improve the convergence rates of the fully heterogenous time-
varying coefficient estimation which only uses the sample information from one node and
its direct neighbors, we propose a post-grouping local linear smoothing method in Section 4
to estimate the group-specific time-varying momentum and network effects by making use
of the consistently estimated group structure. The asymptotic normal distribution theory
is derived with the convergence rates comparable to those for homogenous time-varying
coefficient estimation.

• Structural breaks in the group structure. The existing literature on grouped network VAR mod-
els requires the assumption that the latent group structure is time-invariant. This assump-
tion may be restrictive for some empirical case studies. For example, a macroeconomic
shock such as the global financial crisis may not only lead to a structural break in the group
structure among a large number of countries, but also result in abrupt changes in the vec-
tor autoregressive structure of macroeconomic time series. This paper extends the model,
methodology and theory, allowing for structural breaks in either the group membership,
group number or group-specific coefficient functions. With the two-stage estimation pro-
cedure introduced in Section 5, we consistently estimate the scaled break location and the
group structures over the two time periods separated by the break point. The online supple-
ment (Li et al 2024) further introduces a refined break point estimation using the consistently
estimated group structure to improve the break point estimation accuracy. Our model and
methodology can be seen as an extension of the linear panel model framework (with break
in the group structure) considered by Lumsdaine, Okui & Wang (2023) and Wang, Phillips
& Su (2023), taking into account the network structure and allowing for structural changes
over time.

The finite-sample Monte-Carlo simulation study shows that the proposed clustering algorithm
and ratio criterion can consistently estimate the latent group membership and number as long as
the time series length T is moderately large; the post-grouping local linear estimates perform
significantly better than the naive heterogeneous local linear estimates; and the developed two-
stage estimation procedure can precisely locate the break point and estimate the group structure
before and after the break. The developed model and methodology are further applied to analyze
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the monthly temperature data collected in 37 UK weather stations over the time period between
January 1950 and February 2023. The empirical result reveals that there exist two groups over
the node-specific time-varying coefficients: weather stations in Northern Ireland and Wales tend
to form one group and those in England and Scotland form the other. In addition, our proposed
method outperforms other competing methods in terms of out-of-sample prediction.

The rest of the paper is organized as follows. Section 2 introduces the time-varying network
VAR model together with the latent group structure and provides some fundamental model as-
sumptions. Section 3 describes the estimation methodology for the group structure and estab-
lishes the consistency property for the resulting estimation. Section 4 proposes the post-grouping
nonparametric estimation and derives the relevant asymptotic theory. Section 5 extends the
model, method and theory to the case with breaks in either the group structure or group-specific
coefficient functions. Section 6 reports both the simulation and empirical studies. Section 7 con-
cludes the paper. Appendix A introduces the clustering algorithm to identify the homogeneity
structure on the network effects. The online supplement (Li et al 2024) contains proofs of the
main asymptotic theorems, some technical lemmas with their proofs, discussion on the refined
break point estimation, and extra numerical results. Throughout the paper, we let ⌊·⌋ and ⌈·⌉
be the floor and ceiling functions, respectively. For a vector x = (x1, · · · , xp)

⊺ ∈ Rp, we write
|x|q = (

∑p
i=1 |xi|

q)1/q for q ⩾ 1 and |x|∞ = max1⩽i⩽p |xi|; for a matrix Σ = (σij)p×p, write
|Σ|F = (

∑p
i=1

∑p
j=1 σ

2
ij)

1/2, |Σ|∞ = max1⩽i,j⩽p |σij| and |Σ|O = maxx∈Rp:|x|2=1 |Σx|; and for a p-
dimensional random vector Z, write Z ∈ L κ if ∥Z∥κ := [E(|Z|κ2 )]1/κ < ∞, κ ⩾ 1. Let Ik be a
k× k identity matrix and Ok×l a k× l zero matrix. For a square matrix, λmin(·) and λmax(·) denote
the minimum and maximum eigenvalues and det(·) denotes its determinant. Let an = o(bn),
an = oP(bn) and an ∝ bn denote that an/bn → 0 as n → ∞, an/bn → 0 with probability
approaching one (w.p.a.1), and 0 < c ⩽ an/bn ⩽ c < ∞, respectively.

2 Time-varying network VAR and latent groups

In this section, we introduce the main model framework, i.e., the time-varying network VAR
model with a latent group structure, and impose some fundamental assumptions, ensuring the
network time series are locally stable.

2.1 Grouped time-varying network VAR

Suppose that there exists a partition of the node index set {1, 2, · · · ,N}, denoted by G = {G1, G2, · · · , GK0},
such that Gi ∩ Gj = ∅ for 1 ⩽ i ̸= j ⩽ K0. Let gi ∈ {1, · · · ,K0} be the group membership of the i-th
node, i.e., gi = k is equivalent to i ∈ Gk. Neither the group membership nor the group number is
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known a priori. Consider the following grouped time-varying network VAR model:

xi,t =
∑
j̸=i

αgigj
(τt)w̃ijxj,t−1 + αgi

(τt)xi,t−1 + εi,t, i = 1, · · · ,N, t = 1, · · · , T , (2.1)

where τt = t/T denotes the scaled time point, αgigj
(·) and αgi

(·) are smooth coefficient functions,
and the remaining elements are defined as those in (1.1). In contrast to the linear network VAR
model (1.1), the grouped time-varying network VAR model (2.1) provides a much more flexible
framework, allowing the network and momentum effects to change over time and nodes. In par-
ticular, the interaction between nodes from two groups share the same time-varying network ef-
fects which is appealing for modeling social networks with smooth structural changes. Although
we only consider one lag in model (2.1) for simplicity of exposition, the method and theory de-
veloped in Sections 3 and 4 below can be easily extended to the model setting with finite lags. It
is worth pointing out that our network structure is deterministic (Zhu et al 2017) and the group
membership is determined by node-specific time-varying momentum and network spillover ef-
fects. This is substantially different from the community network VAR model studied by Chen,
Fan & Zhu (2023), where the network structure is random and the community structure is used
for the network generating mechanism.

Let W̃ be the row-normalized adjacency matrix with the (i, j)-entry being w̃ij, B1(·) be an N×N

matrix being the diagonal entries being zeros and the off-diagonal (i, j)-entry being αgigj
(·) and

B2(·) = diag{αg1(·), · · · ,αgN
(·)}. Then, we may rewrite model (2.1) as

Xt = B(τt)Xt−1 + εt, B(τt) = B1(τt)⊙ W̃ + B2(τt), t = 1, · · · , T , (2.2)

where ⊙ denotes the Hadamard product between matrices. Model (2.2) thus falls within the
high-dimensional time-varying VAR model framework which has received increasing attention
in recent years. For instance, Ding, Qiu & Chen (2017) propose a kernel-weighted ℓ1-regularised
estimation for a time-varying VAR model; Xu, Chen & Wu (2020) study a high-dimensional VAR
model with multiple breaks and estimate smooth time-varying covariance and precision matrices
between the break points; Chen et al (2023) estimate dual network structures via directed Granger
causality and undirected partial correlation linkages within the high-dimensional time-varying
VAR framework. However, the aforementioned literature often assumes a sparsity condition
on the time-varying VAR transition matrices to facilitate the use of the regularised estimation
techniques and cannot directly capture possible time-varying network effects. In this paper, we
decompose the time-varying transition matrix into two components: B2(τt) capturing the mo-
mentum effects and B1(τt)⊙ W̃ capturing the dynamic network spillover effects.

The proposed model (2.1) contains the homogenous time-varying network VAR model (e.g.,
Wu 2019) as a special case, i.e.,

xi,t = α†
1(τt)

∑
j̸=i

w̃ijxj,t−1 + α†
2(τt)xi,t−1 + εi,t.
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In contrast to the fully heterogenous network VAR model (e.g., Yin, Safikhani & Michailidis 2024),
our model achieves substantial dimension reduction, reducing the number of unknown coeffi-
cient functions to K2

0 + K0 which is finite (as K0 is assumed to be fixed). In the homogenous or
grouped linear network VAR (e.g., Zhu et al 2017, Chen, Fan & Zhu 2023, Zhu, Xu & Fan 2023),
the so-called nodal effect is often incorporated in the model formulation. Hence, we may further
extend model (2.1) to

xi,t =
∑
j̸=i

αgigj
(τt)w̃ijxj,t−1 + αgi

(τt)xi,t−1 + Z
⊺

iγgi
(τt) + εi,t, (2.3)

where Zi is a p-dimensional vector of node-specific exogenous covariates and γgi
(·) is a vec-

tor of smooth coefficient functions. Letting {Zi} be independent of {εi,t}, the model framework
and methodology developed in the sequel can be extended to tackle (2.3) with slight modifica-
tion. However, for notational simplicity, we mainly focus on model (2.1) without the nodal effect
throughout the paper.

2.2 Fundamental assumptions and functional dependence measure

Let f′(·) and f′′(·) be the first- and second-order derivatives of f(·). We impose the following
assumption on model (2.1).

Assumption 1. (i) For 1 ⩽ g,g∗ ⩽ K0, αgg∗(·) and αg(·) are second-order continuously differentiable
functions with

max
1⩽g,g∗⩽K0

sup
0⩽τ⩽1

{∣∣α′
gg∗(τ)

∣∣+ ∣∣α′′
gg∗(τ)

∣∣}+ max
1⩽g⩽K0

sup
0⩽τ⩽1

{∣∣α′
g(τ)

∣∣+ ∣∣α′′
g(τ)

∣∣} ⩽ cα,

where cα is a positive constant. In addition,

max
1⩽g,g∗⩽K0

sup
0⩽τ⩽1

|αgg∗(τ)|+ max
1⩽g⩽K0

sup
0⩽τ⩽1

|αg(τ)| < 1. (2.4)

(ii) Let {εt} be a sequence of i.i.d. random vectors with zero mean, positive definite covariance matrix
denoted by Σε, and

max
1⩽i⩽N

E [|εi,t|
q] ⩽ cε,

where q > 8 and cε is a positive constant.

Remark 2.1. (i) The smoothness condition on αgg∗(·) and αg(·) in Assumption 1(i) is common for the local
linear estimation method and theory (e.g., Fan & Gijbels 1996). We may replace it by the condition that
αgg∗(·) and αg(·) belong to the Hölder class (e.g., Definition 1.2 in Tsybakov 2008) when adopting a general
local polynomial estimation. The condition (2.4) in Assumption 1(i) is a natural extension of the stability
assumption for grouped linear network VAR (Zhu, Xu & Fan 2023), ensuring that the underlying time
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series process is locally stable1. We require a relatively strong moment condition (q > 8) in Assumption
1(ii) to derive the uniform convergence of the kernel-weighted quantities, see Lemmas D.1 and D.2 in
Appendix D of the supplement (Li et al 2024).

(ii) For Xt defined in (2.2), its stationary approximation is given by

X◦
t(τ) = B(τ)X◦

t−1(τ) + εt, 0 ⩽ τ ⩽ 1. (2.5)

It follows from (2.4) in Assumption 1(i) that |B(τ)|O < 1 uniformly over 0 ⩽ τ ⩽ 1. Hence, we obtain the
following Wold representation:

X◦
t(τ) = G(τ, Ft) :=

∞∑
j=0

Bj(τ)εt−j, (2.6)

where Ft = (· · · , εt−1, εt). Assume that

sup
0⩽τ⩽1

∥|X◦
t(τ)|∞∥q ⩽ θN,q, (2.7)

which is weaker than the condition in Example 2.1 of Zhang & Wu (2021) as we allow θN,q to diverge as
N increases. When N is fixed, the above condition can be simplified to sup0⩽τ⩽1 E[|X◦

t(τ)|
q
q] ⩽ θq with θq

be a positive constant. Letting X◦
t = X◦

t(τt), under Assumption 1(i) and (2.7), we may show that

max
1⩽t⩽T

∥|Xt − X◦
t |∞∥q = O (θN,q/T) , (2.8)

indicating that Xt may be replaced by X◦
t in the asymptotic derivation by restricting the divergence rate of

θN,q. The proof of (2.8) is provided in Appendix B of the supplement (Li et al 2024), which also discusses
the connection of the proposed model to the nonlinear functional dependence measure introduced by Wu
(2005).

3 Estimation of the latent group structure

In this section, we introduce the methodology for estimating the latent group membership and
number, and present the relevant asymptotic properties.

3.1 Group membership estimation when K0 is pre-specified

We next introduce the nonparametric estimation and clustering methods and obtain the consistent
estimation of the group membership G when K0 is known a priori. The methodology can be split

1The condition in (2.4) may be replaced by the following assumption: uniformly over τ ∈ [0, 1], det(IN−zB(τ)) ̸= 0
for all |z| ⩽ 1. In fact, (2.4) is a sufficient condition to guarantee the latter assumption.
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into the following three stages.

Stage 1: As there is no prior information on the latent group structure, we start with the fully
heterogenous time-varying network VAR model:

xi,t =
∑
j∈Ni

βij(τt)w̃ijxj,t−1 + βi(τt)xi,t−1 + εi,t, (3.1)

where Ni = {j ̸= i : wij = 1} is the index set of nodes which the i-th node follows, βij(·) = αgigj
(·)

and βi(·) = αgi
(·). Model (3.1) is similar to that in Yin, Safikhani & Michailidis (2024). Note

that βij(·), j /∈ Ni, are unidentifiable and thus not estimable. With the smoothness condition in
Assumption 1(i), we adopt the local linear smoothing (e.g., Fan & Gijbels 1996) to estimate the
heterogenous time-varying coefficient functions, only using the sample information from the i-th
node and its direct neighbors, i.e., w̃ij ̸= 0.

Define
X̃i,t−1 =

[
(w̃ijxj,t−1 : j ∈ Ni)

⊺

, xi,t−1

]⊺
,

which is a random vector with dimension ni + 1, where ni = card(Ni) is allowed to diverge
slowly to infinity and card(·) denotes the cardinality of a set. Letting

βi•(τ) =
[
(βij(τ) : j ∈ Ni)

⊺

,βi(τ)
]⊺

,

with Assumption 1(i), we have the following Taylor expansion:

βi•(τt) ≈ βi•(τ) + β′
i•(τ)(τt − τ)

when τt falls in a small neighborhood of τ. Define the node-specific local linear weighted objective
function:

Li(a,b) =
T∑

t=1

[
xi,t − a

⊺
X̃i,t−1 − b

⊺
X̃i,t−1(τt − τ)

]2
Kh(τt − τ), (3.2)

where a and b are (ni + 1)-dimensional vectors, Kh(·) = 1
h
K(·/h), K(·) is a kernel function and h

is a bandwidth. Minimizing Li(a,b) with respect to the vectors a and b, we obtain the solution
denoted as â and b̂, and then the local linear estimate of βi•(τ) as

β̂i•(τ) =

[(
β̂ij(τ) : j ∈ Ni

)⊺

, β̂i(τ)

]⊺

= â. (3.3)

In practice, we obtain the local linear estimates at τ∗l , l = 1, · · · ,L, a sequence of user-specified
equidistant grid points between 0 and 1 satisfying L → ∞ and L = O(T).

Stage 2: Let ¯NN = {(i, j) : 1 ⩽ i ⩽ N, j ∈ Ni}. It follows from (2.1) that there exists a latent
homogeneity structure for βij(·), (i, j) ∈ ¯NN, and the number of distinct time-varying coefficient
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functions is at most K2
0. Let β◦

m(·), m = 1, · · · ,M0, denote the true distinct time-varying coefficient
functions for network spillover effects, M0 ⩽ K2

0, and gij ∈ {1, · · · ,M0} be the group membership
for the index pair (i, j) ∈ ¯NN. With {β̂ij(τ

∗
l) : 1 ⩽ l ⩽ L, (i, j) ∈ ¯NN} obtained in Stage 1,

combining the clustering algorithm and the ratio criterion with details provided in Appendix A
(see also Stage 3 and Section 3.2), we may obtain a consistent estimate of M0 denoted by M̂, and
the estimated membership ĝij. For the i-th node, we construct

β̂◦
i•(τ) =

[
β̂◦
i1(τ), · · · , β̂◦

iM̂
(τ)
]⊺

with β̂◦
im(τ) =

∑
j∈Ni

β̂ij(τ)ω̂ij,m, (3.4)

where τ is chosen as the grid points τ∗l defined in Stage 1,

ω̂ij,m =

{
I(ĝij = m)/

∑
j∈Ni

I(ĝij = m), if
∑

j∈Ni
I(ĝij = m) > 0,

0, if
∑

j∈Ni
I(ĝij = m) = 0,

and I(·) denotes the indicator function.

Stage 3: With the estimates β̂i(·) and β̂◦
i•(·) defined in Stages 1 and 2, respectively, we may

compute the point-wise distance between nodes i and j:

d̂ij(τ) =
∣∣∣β̂i(τ) − β̂j(τ)

∣∣∣+ ∣∣∣β̂◦
i•(τ) − β̂◦

j•(τ)
∣∣∣
2

, (3.5)

and subsequently define the distance matrix:

D̂ =
{
D̂ij

}
N×N

, D̂ij =
1
L

L∑
l=1

d̂ij(τ
∗
l).

It is clear that the diagonal elements of D̂ are zeros. With the distance matrix D̂, we may adopt the
agglomerative hierarchical clustering algorithm which is commonly used in unsupervised cluster
analysis (e.g., Hastie, Tibshirani & Friedman 2009, Everitt et al 2011). This clustering algorithm has
been recently combined with the kernel-based estimation technique to identify the homogene-
ity/group structure in nonparametric panel regression models. For instance, Chen (2019) con-
structs a similar distance matrix and further estimates the latent group structure in time-varying
coefficient panel data models; and Vogt & Linton (2020) introduce a bandwidth-free normalized
distance measure in the clustering algorithm but assume the panel observations are independent
over subjects. The latter assumption may be too restrictive for large-scale network time series
data and is thus removed in this paper. Another relevant paper is Zhang (2013) which clusters
nonlinear trend functions based on parallelism and allows the number of time series to grow at a
slow polynomial rate of T . In contrast, the number of nodes N can be much larger than T in this
paper, see (3.4) in Assumption 2(iii).

Assuming the true group number K0 is known a priori, we start with N clusters each of which
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corresponds to one node, search for the smallest off-diagonal entry in D̂ (which is the smallest
estimated distance between nodes), and merge the two corresponding nodes. Consequently the
cluster number reduces from N to N− 1. Use a linkage technique (such as the single or complete
linkage) to calculate the distance between the merged cluster and the remaining ones and update
the estimated distance matrix with size (N − 1) × (N − 1). Repeat the previous steps with the
updated distance matrix, and stop the algorithm when the number of clusters reaches K0. We
denote the estimated clusters by Ĝk, k = 1, · · · ,K0.

Let ∆i,t = E[X̃i,tX̃
⊺

i,t] with X̃i,t defined in Stage 1, and write

β◦
i•(τ) =

[
β◦
i1(τ), · · · ,β◦

iM0
(τ)
]⊺

with β◦
im(τ) =

∑
j∈Ni

βij(τ)ωij,m (3.6)

and

ωij,m =

{
I(gij = m)/

∑
j∈Ni

I(gij = m), if
∑

j∈Ni
I(gij = m) > 0,

0, if
∑

j∈Ni
I(gij = m) = 0.

The latter is estimated by β̂◦
i•(τ) defined in (3.4) (up to permutation). The following conditions

are required to derive the consistency property of Ĝk, k = 1, · · · ,K0.

Assumption 2. (i) The kernel function K (·) is a symmetric probability density function that is Lipschitz-
continuous and has a compact support [−1, 1].

(ii) There exist two finite positive constants: λ and λ, such that

0 < λ ⩽ min
1⩽i⩽N

min
0⩽t⩽T−1

λmin(∆i,t) ⩽ max
1⩽i⩽N

sup
0⩽t⩽T−1

λmax(∆i,t) ⩽ λ < ∞.

(iii) Let T , N, and h satisfy h → 0, Th → ∞ and

Nθq
N,q

T
q2−6q−8

4(q+2) [h log(N∨ T)]
q/4

→ 0 (3.7)

with q defined in Assumption 1(ii) and θN,q is defined in (2.7).

(iv) Letting Ni(j) = {k ∈ Ni : gk = j} and n̄ = max1⩽i⩽N ni,

min
1⩽i,j⩽K0

card(Ni(j)) ⩾ 1, n̄ = o

(√
Th/ log(N∨ T)

)
. (3.8)

Assumption 3. Let

√
n̄

(
h2 +

√
log(N∨ T)

Th

)
+ L−1 = o

(
ζ†NT ∧ ζ‡NT

)
, (3.9)
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where

ζ†NT = min
1⩽gi ̸=gj⩽K0

∫ 1

0

[∣∣αgi
(τ) − αgj

(τ)
∣∣+ ∣∣β◦

i•(τ) − β◦
j•(τ)

∣∣
2

]
dτ

and

ζ‡NT = min
1⩽m ̸=m∗⩽M0

∫ 1

0
|β◦

m(τ) − β◦
m∗(τ)|dτ.

Remark 3.1. (i) Assumption 2(i) contains some commonly-used conditions imposed on the kernel function
(e.g., Fan & Gijbels 1996). Assumption 2(ii) is crucial to ensure that the kernel-weighted random denom-
inator in local linear estimation is non-singular. In fact, the consistency property in Theorem 3.1 below
continues to hold by allowing λ to slowly converge to zero and strengthening other relevant conditions,
e.g., the second restriction in (3.8) and (3.9) would be strengthened to

n̄ = o

(
λ
√
Th/ log(N∨ T

)
and

√
n̄

(
h2 +

√
log(N∨ T)

Th

)
/λ+ L−1 = o

(
ζ†NT

)
,

respectively. Note that h → 0 and Th → ∞ in Assumption 2(iii) are regular conditions for kernel-based
smoothing, whereas the condition (3.7) indicates that there is a trade-off between the network size and the
required moment condition (i.e., when q increases, N may diverge at a faster rate). The first condition in
(3.8) indicates that node i follows nodes in each of the K0 groups and αgigj

(·) is estimable via the local
linear method in Stage 1, whereas the second condition in (3.8) restricts the divergence rate of ni so that
the first-stage local linear estimation of the heterogenous time-varying coefficient functions is uniformly
consistent, see Lemma D.3 in the supplement (Li et al 2024).

(ii) Assumption 3 indicates that the minimum distance between groups may converge to zero at a rate
slower than a typical nonparametric uniform convergence rate if the grid number L is of order T and n̄ is
bounded. The restriction (3.9) is automatically satisfied if ζ†NT and ζ‡NT are strictly larger than a positive
constant (e.g., Zhu, Xu & Fan 2023).

Theorem 3.1 below establishes the consistency property of the group membership estimation
when K0 is pre-specified.

Theorem 3.1. Suppose that Assumptions 1–3 hold and K0 is known a priori. Then, as N, T → ∞ jointly,
we have

P
({

Ĝk, 1 ⩽ k ⩽ K0
}
=

{
Gk, 1 ⩽ k ⩽ K0

})
→ 1. (3.10)

Remark 3.2. The consistency property (3.10) is similar to the consistency results of group membership
estimation in nonparametric panel/longitudinal data models, see Theorem 3.1 in Vogt & Linton (2017) and
Theorem 4.1(a) in Vogt & Linton (2020). The key step of proving Theorem 3.1 is to show that

max
1⩽k⩽K0

max
i,j∈Gk

D̂ij < min
1⩽k̸=l⩽K0

min
i∈Gk,j∈Gl

D̂ij, w.p.a.1.

This can be proved by using the uniform convergence property of d̂ij(·).
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3.2 Estimation of the group number

In practice, the true number of groups is unknown and a data-driven criterion is thus required
to obtain its consistent estimation. We next introduce an easy-to-implement ratio criterion to
estimate K0 consistently. Assuming the group number to be K, we may terminate the clustering
algorithm in Stage 3 when the cluster number reaches K and obtain the estimated clusters denoted
by Ĝk|K, k = 1, · · · ,K. With these estimated clusters, we pool the heterogenous time-varying
coefficient estimates β̂i(·) and β̂◦

i•(·) over i ∈ Ĝk|K, and obtain

β̂k|K(τ) =
1

card
(
Ĝk|K

) ∑
i∈Ĝk|K

β̂i(τ), β̂◦
k|K(τ) =

1

card
(
Ĝk|K

) ∑
i∈Ĝk|K

β̂◦
i•(τ). (3.11)

Then, we define the average deviation:

R̂(K) =
1
KL

K∑
k=1

L∑
l=1

1

card
(
Ĝk|K

) ∑
i∈Ĝk|K

[∣∣∣β̂i(τ
∗
l) − β̂k|K(τ

∗
l)
∣∣∣+ ∣∣∣β̂◦

i•(τ
∗
l) − β̂◦

k|K(τ
∗
l)
∣∣∣
2

]
. (3.12)

The grouped time-varying network VAR model is either correctly- or over-fitted when K ⩾ K0,
indicating that R̂(K) converges to zero, and is under-fitted when K < K0. For the latter scenario,
at least two groups would be falsely merged, leading to biased estimation of some group-specific
time-varying coefficient functions and a relatively large value of R̂(K). Hence, it is sensible to
estimate K0 by

K̂ = argmin
1⩽K⩽K

R̂(K)

R̂(K− 1)
, (3.13)

where K is a pre-specified positive integer larger than K0. In practical implementation, we set
R̂(1)/R̂(0) ≡ 1, R̂(K) = 0 if it is smaller than ρNT , a user-specified tuning parameter, and define
0/0 ≡ 1. A similar ratio criterion is adopted by Yang et al (2023) to consistently estimate the group
number in nonparametric grouped panel quantile regression models. Other applications of the
ratio criterion can be found in Lam & Yao (2012) and Li, Robinson and Shang (2020).

We require some further conditions to derive the consistency property of K̂.

Assumption 4. (i) There exists a positive constant cG such that

min
1⩽k⩽K0

card(Gk) ⩾ cG ·N.

(ii) The tuning parameter ρNT satisfies that

ρNT = o
(
ζ†NT ∧ ζ‡NT

)
,

√
n̄

(
h2 +

√
log(N∨ T)

Th

)
= o (ρNT ) . (3.14)
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Remark 3.3. Assumption 4(i) indicates that the cardinality of Gk is of the same order over k. A similar
restriction is also adopted by Chen (2019) and Zhu, Xu & Fan (2023). Assumption 4(ii) indicates that the
order of ρNT lies between

√
n̄(h2 +

√
log(N∨ T)/(Th)) and ξ†

NT ∧ ξ‡
NT , which is not unreasonable due

to Assumption 3. In particular, when ξ†
NT ∧ ξ‡

NT is bounded away from zero and n̄ is upper bounded by a
positive constant, the conditions in (3.14) can be simplified to

ρNT → 0, h2 +

√
log(N∨ T)

Th
= o (ρNT ) .

We establish the consistency property of the ratio criterion in the following theorem.

Theorem 3.2. Suppose that Assumptions 1–4 are satisfied. Then, as N, T → ∞ jointly,

P
(
K̂ = K0

)
→ 1. (3.15)

Finally, we use the estimated group number K̂ and terminate the clustering algorithm in Sec-
tion 3.1 when the cluster number reaches K̂. In order to avoid unnecessary notational burden, we
still denote the estimated groups as Ĝk, k = 1, · · · , K̂. Combining Theorems 3.1 and 3.2, we readily
have the following result.

Corollary 3.3. Suppose that Assumptions 1–4 are satisfied. Then, as N, T → ∞ jointly,

P
({

Ĝk, 1 ⩽ k ⩽ K̂
}
=

{
Gk, 1 ⩽ k ⩽ K0

})
→ 1. (3.16)

4 Post-grouping local linear estimation

The heterogenous local linear estimation defined in (3.3) only makes use of the sample informa-
tion from node i and its direct neighbors, resulting in rather slow convergence rates (see Lemma
D.3 in the supplement) and unstable numerical performance if T is not sufficiently large in finite
samples. We next aim to address this issue by pooling the sample information over nodes in the
same cluster and proposing a post-grouping local linear estimation.

It follows from Corollary 3.3 that, for any k = 1, · · · ,K0, there exists 1 ⩽ k† ⩽ K̂ such that
Gk = Ĝk† w.p.a.1. Without loss of generality, we may consider Gk = Ĝk (conditioning on K̂ = K0)
throughout this section. For i ∈ Ĝk, define

X̌i,t−1 =

∑
j∈Ĝ1

w̃ijxj,t−1, · · · ,
∑
j∈Ĝ

K̂

w̃ijxj,t−1, xi,t−1

⊺

,
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which is a random vector with dimension K̂+ 1. For the k-th group, let

αk•(τ) = [αk1(τ), · · · ,αkK0(τ),αk(τ)]
⊺

be a vector of true group-specific time-varying coefficient functions to be estimated. For each k

and given τ ∈ (0, 1), we define the following post-grouping local linear objective function:

∑
i∈Ĝk

T∑
t=1

[
xi,t − a

⊺
X̌i,t−1 − b

⊺
X̌i,t−1(τt − τ)

]2
Kh†(τt − τ), (4.1)

where h† is a bandwidth which may be different from h used in the heterogenous local linear
estimation (3.2) and (3.3). Minimizing the post-grouping objective function with respect to the
vectors a and b, we obtain the solutions denoted by ǎ and b̌, and construct the post-grouping
local linear estimation as

α̌k•(τ) = [α̌k1(τ), · · · , α̌kK0(τ), α̌k(τ)]
⊺

= ǎ. (4.2)

Let σij = E (εi,tεj,t) and

∆⋄
ij(τ) = E

[
X⋄
i,t(τ)X

⋄⊺
j,t(τ)

]
, 1 ⩽ i, j ⩽ N,

where

X⋄
i,t =

∑
j∈G1

w̃ijx
◦
j,t(τ), · · · ,

∑
j∈GK0

w̃ijx
◦
j,t(τ), x

◦
i,t(τ)

⊺

with x◦i,t(τ) being the i-th element of X◦
t(τ) defined in (2.6).

Assumption 5. (i) The bandwidth h† satisfies that h† → 0 and Th†/ log(N∨T) → ∞. In addition, (3.7)
holds when h is replaced by h†.

(ii) There exists a positive definite matrix ΥGk
(τ) such that

1
card(Gk)

∑
i,j∈Gk

σij∆
⋄
ij(τ) → ΥGk

(τ) (4.3)

as card(Gk) → ∞, and in addition,

1
card(Gk)

∑
i∈Gk

∆⋄
i (τ) → ∆Gk

(τ),

which is positive definite, where ∆⋄
i (τ) = ∆⋄

ii(τ).

Remark 4.1. The bandwidth restriction in Assumption 5(i) is comparable to that in Assumption 2(iii).
Assumption 5(ii) allows weak correlation between nodes and can be substantially simplified when εi,t are
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independent over i (e.g., Zhu et al 2017). For example, if σij = 0 when i ̸= j and σii ≡ σ2, (4.3) would be
simplified to

1
card(Gk)

∑
i,j∈Gk

σij∆
⋄
ij(τ) =

σ2

card(Gk)

∑
i∈Gk

∆⋄
i (τ) → σ2∆Gk

(τ).

Theorem 4.1. Suppose that Assumptions 1–5 are satisfied. For any τ ∈ (0, 1),√
card(Gk)Th†

[
α̌k•(τ) − αk•(τ) −

1
2
h2
†µ2α

′′
k•(τ)

]
d−→ N (0,ΩGk

(τ)) , (4.4)

as N, T → ∞ jointly, where ΩGk
(τ) = ν0∆

−1
Gk
(τ)ΥGk

(τ)∆−1
Gk
(τ), νκ =

∫
uκK2(u)du and µκ =

∫
uκK(u)du

for k = 0, 1, · · · .

Remark 4.2. Since card(Gk) is of order N by Assumption 4(i), Theorem 4.1 shows that the post-grouping
local linear estimation α̌k•(τ) has the point-wise convergence rate 1/

√
NTh† + h2

†, which is substantially
faster than that for the heterogenous local linear estimation (ignoring the group structure). This is unsur-
prising since more sample information is used in the post-grouping estimation procedure. Note that Yin,
Safikhani & Michailidis (2024) use the spline-based estimation for heterogenous functional coefficients,
which only achieve the root-T convergence rate. If, in addition, εi,t are independent over i, as discussed in
Remark 4.1, we may simplify the asymptotic covariance matrix, i.e., ΩGk

(τ) = ν0σ
2∆−1

Gk
(τ).

5 Breaks in the group structue

The model, methodology and theory developed in Sections 2–4 rely on the assumption that the
latent group structure is time invariant and the group-specific coefficient functions are smooth
over the entire time span. As discussed in the introductory section, this assumption may be re-
strictive for some empirical applications. Hence, we next make a further extension of the model,
methodology and theory, allowing structural breaks in either the group membership, group num-
ber or group-specific coefficient functions. Our main interest lies in locating the break point and
estimating the group structure before and after the break. We mainly consider the case of a single
break for notational brevity and will briefly discuss its extension to the case of multiple breaks
later in Remark 5.2(ii).

Assume that the break occurs at an unknown time point t0. Let G 1 = {G 1
1 , · · · , G 1

K1
} and g1

i ∈
{1, · · · ,K1} be the group structure and membership label (for node i) before the break, whereas let
G 2 = {G 2

1 , · · · , G 2
K2
} and g2

i ∈ {1, · · · ,K2} be defined similarly for those after the break. Consider
the time-varying network VAR model with break in the group structure:

xi,t =


∑

j̸=i α
1
g1
ig

1
j

(τt)w̃ijxj,t−1 + α1
g1
i

(τt)xi,t−1 + εi,t, 1 ⩽ t ⩽ t0,∑
j̸=i α

2
g2
ig

2
j
(τt)w̃ijxj,t−1 + α2

g2
i
(τt)xi,t−1 + εi,t, t0 + 1 ⩽ t ⩽ T ,

(5.1)

16



where α1
g1
ig

1
j

(·) (or α2
g2
ig

2
j
(·)) and α1

g1
i

(·) (or α2
g2
i
(·)) are the smooth time-varying network spillover

and momentum effects before (or after) the break. Model (5.1) can be seen as an extension of the
linear panel model framework (with break in the group structure) in Lumsdaine, Okui & Wang
(2023) and Wang, Phillips & Su (2023), taking into account the smooth time-varying feature and
network structure.

Throughout this section, assume that n̄ is bounded. We next introduce a two-stage estimation
procedure with break location estimation in Stage 1 and then group estimation in Stage 2.

Stage 1: As the time-varying group structure is latent, similar to (3.1), we first consider the
fully heterogenous time-varying network VAR model with break at t0:

xi,t =
∑
j∈Ni

β‡
ij(τt)w̃ijxj,t−1 + β‡

i(τt)xi,t−1 + εi,t, (5.2)

where

β‡
ij(τt) =

{
β1
ij(τt), 1 ⩽ t ⩽ t0,

β2
ij(τt), t0 + 1 ⩽ t ⩽ T ,

β‡
i(τt) =

{
β1
i(τt), 1 ⩽ t ⩽ t0,

β2
i(τt), t0 + 1 ⩽ t ⩽ T .

(5.3)

Write

β‡
i•(τt) =

[(
β‡
ij(τt) : j ∈ Ni

)⊺

,β‡
i(τt)

]⊺

as in Section 3.1, and let

β‡,l
i•(τ) = lim

x↑τ
β‡
i•(x) and β‡,r

i•(τ) = lim
x↓τ

β‡
i•(x)

denote the left and right limits of β‡
i•(τ), respectively. Define

δβ(t) = max
1⩽i⩽N

∣∣∣β‡,r
i•(τt) − β‡,l

i•(τt)
∣∣∣
2

. (5.4)

It follows from (5.1)–(5.3) that δβ(t), t = 1, · · · , T , achieve the maximum at t = t0, which moti-
vates the subsequent estimation procedure. Specifically, we estimate δβ(t) by a one-sided kernel
smoothing method2 and then locate the break point by maximizing the estimate of δβ(t) over t.

Let K‡(·) be a one-sided kernel function with a compact support [0, 1], say, the one-sided ver-
sion of the Epanechnikov kernel. Define

Γ̃
l
it =

1
Th‡

T∑
s=1

X̃i,s−1X̃
⊺

i,s−1K
‡
(
τt − τs

h‡

)
, Γ̃

r
it =

1
Th‡

T∑
s=1

X̃i,s−1X̃
⊺

i,s−1K
‡
(
τs − τt

h‡

)
,

2The extension to the one-sided local polynomial smoothing is straightforward, see Chen, Wang & Wu (2022).
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Γ
l
it =

1
Th‡

T∑
s=1

X̃i,s−1xi,sK
‡
(
τt − τs

h‡

)
, Γ

r
it =

1
Th‡

T∑
s=1

X̃i,s−1xi,sK
‡
(
τs − τt

h‡

)
,

where h‡ is the bandwidth and X̃i,s−1 is defined as in Section 3.1. We estimate β‡,l
i•(τt) and β‡,r

i•(τt)

by

β̂‡,l
i•(τt) =

(
Γ̃

l
it

)−1
Γ

l
it and β̂‡,r

i•(τt) =
(
Γ̃

r
it

)−1
Γ

r
it, (5.5)

respectively, and then construct

δ̂β(t) = max
1⩽i⩽N

∣∣∣β̂‡,r
i•(τt) − β̂‡,l

i•(τt)
∣∣∣
2

. (5.6)

The estimation of t0 is defined as
t̂ = argmax

t

δ̂β(t). (5.7)

Stage 2: Let

T1 = {1, 2, · · · , t̂− ⌊ϵ0T⌋} and T1 = {̂t+ ⌊ϵ0T⌋, · · · , T − 1, T },

where ϵ0 is an arbitrarily small positive number (say 0.01). From Theorem 5.1(i), the group mem-
bership and number are time invariant w.p.a.1 over the two time periods T1 and T2. Hence, we
may adopt the clustering algorithm and ratio criterion developed in Section 3 to estimate G 1

k and
K1 (using the network time series sample over T1) as well as G 2

k and K2 (using the sample over T2).
We denote the resulting estimates as Ĝ 1

k , K̂1, Ĝ 2
k and K̂2, whose consistency property is derived in

Theorem 5.1(ii) below.

The following conditions are required to derive the asymptotic property of the above two-
stage estimation method.

Assumption 6. (i) For 1 ⩽ g,g∗ ⩽ K1, α1
gg∗(·) and α1

g(·) have bounded first-order derivatives and satisfy

max
1⩽g,g∗⩽K1

sup
0⩽τ⩽1

∣∣α1
gg∗(τ)

∣∣+ max
1⩽g⩽K1

sup
0⩽τ⩽1

∣∣α1
g(τ)

∣∣ < 1.

The same conditions hold for α2
gg∗(·) and α2

g(·), 1 ⩽ g,g∗ ⩽ K2.

(ii) K‡(·) is positive and Lipschitz-continuous with a compact support [0, 1].

(iii) There exist positive constants c1 ∈ (0, 1) and c2 such that t0 = c1T and δβ(t0) > c2.

(iv) There exist positive constant c3 and c4 such that

min
1⩽k⩽K1

card(G 1
k) ⩾ c3 ·N and min

1⩽k⩽K2
card(G 2

k) ⩾ c4 ·N.

Remark 5.1. Assumption 6(i)(ii) contains some typical conditions on the time-varying coefficient func-
tions and kernel function which are often required when the one-sided kernel smoothing is adopted. In
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particular, Assumption 6(i) ensures that the grouped time-varying network VAR process is locally stable
over the two time periods separated by the break point. Assumption 6(iii) indicates that the break location is
well separated from the endpoints and the break size is bounded away from zero. The structural break may
be due to abrupt changes in the group-specific time-varying coefficients functions or breaks in the group
membership or number. More discussion and examples are available in Appendix E of the online supple-
ment (Li et al 2024). In fact, by slightly modifying the proof and theory, we may allow δβ(t0) to slowly
approach zero as in Chen, Wang & Wu (2022). Assumption 6(iv) is a natural extension of Assumption
4(i) to the time-varying group structure.

Let β◦1
i•(·) be defined similarly to β◦

i•(·) in (3.6) but with βij(·) replaced by β1
ij(·). As β◦

m(·)
defined in Stage 2 of Section 3.1, we let β◦1

m(·), m = 1, · · · ,M1, denote the distinct coefficient
functions for time-varying network effects before the break, where M1 ⩽ K2

1. The definitions of
β◦2
i•(·) and β◦2

m(·), m = 1, · · · ,M2, are analogous. Define

ζ†1
NT = min

1⩽g1
i ̸=g1

j⩽K1

∫c1

0

[∣∣∣α1
g1
i
(τ) − α1

g1
j
(τ)
∣∣∣+ ∣∣β◦1

i•(τ) − β◦1
j•(τ)

∣∣
2

]
dτ,

ζ†2
NT = min

1⩽g2
i ̸=g2

j⩽K2

∫ 1

c1

[∣∣∣α2
g2
i
(τ) − α2

g2
j
(τ)
∣∣∣+ ∣∣β◦2

i•(τ) − β◦2
j•(τ)

∣∣
2

]
dτ,

ζ‡1
NT = min

1⩽m ̸=m∗⩽M1

∫c1

0

∣∣β◦1
m(τ) − β◦1

m∗(τ)
∣∣dτ,

ζ‡2
NT = min

1⩽m ̸=m∗⩽M2

∫ 1

c1

∣∣β◦2
m(τ) − β◦2

m∗(τ)
∣∣dτ.

Let N 1
i (j) = {k ∈ Ni : g

1
k = j} and N 2

i (j) = {k ∈ Ni : g
2
k = j}.

Theorem 5.1. Suppose that Assumptions 1(ii), 2(ii) and 6(i)–(iii) are satisfied.

(i) The break location estimate t̂ has the following approximation order:∣∣∣∣∣ t̂− t0

T

∣∣∣∣∣ = OP

(√
n̄h‡ log(N∨ T)

T
+ h2

‡

)
. (5.8)

(ii) If, in addition, Assumption 6(iv) is satisfied and (3.8), (3.9) and (3.14) continue to hold when h,
card(Ni(j)) and ζ†NT∧ζ‡NT and replaced by h‡, card(N 1

i (j))∧card(N 2
i (j)) and min{ζ†1

NT , ζ†2
NT , ζ‡1

NT , ζ‡2
NT },

respectively, we have

P
({

Ĝ 1
k , 1 ⩽ k ⩽ K̂1

}
=

{
G 1
k , 1 ⩽ k ⩽ K1

})
→ 1,

P
({

Ĝ 2
k , 1 ⩽ k ⩽ K̂2

}
=

{
G 2
k , 1 ⩽ k ⩽ K2

})
→ 1,

P
(
K̂1 = K1

)
→ 1, P

(
K̂2 = K2

)
→ 1,

as N, T → ∞ jointly.
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Remark 5.2. (i) Theorem 5.1(i) shows that the scaled break point estimation is consistent. Although the
convergence rate in (5.8) is conservative, it is sufficient to consistently estimate the time-varying group
membership and number in Stage 2. The approximation rate may be improved if we replace the one-sided
kernel by one-sided local linear smoothing (e.g., Chen, Wang & Wu 2022) in Stage 1.

(ii) In practice, there are often multiple breaks in the latent group structure, i.e., breaks occur at some
unknown but well separated break points t1, t2, · · · , tp. In this setting, the methodology and theory con-
tinue to hold with minor amendments. For example, we may use the recursive algorithm in Xu, Chen
& Wu (2020) to locate the p break points, an idea similar to the binary segmentation commonly used to
estimate multiple breaks in parametric models (e.g., Cho & Fryzlewicz 2012, 2015).

(iii) In Appendix E of the online supplement (Li et al 2024), we discuss a refined break point estimation,
making use of the consistently estimated group structures. Under some high-level conditions, we show that
the refined estimation of the break location is consistent. Furthermore, we provide a few examples to verify
the high-level conditions.

6 Numerical studies

In this section, we conduct both the simulation and empirical studies. Sections 6.1 and 6.2 assess
the finite-sample performance of the developed methodology and verify the main convergence
properties via simulation, whereas Section 6.3 reports the empirical application to a network time
series data set for UK temperature.

6.1 Simulation study without break

We use the grouped network time-varying VAR model (2.1) for data generation. The entries of
the adjacency matrix W are defined by wij = I(uij ⩽ w̄), where uij ∼ U(0, 1) and 0 < w̄ < 1,
controlling the sparsity level of the network structure. The innovation vectors are generated by
εt ∼ N(0,Σε) independently over t, where Σε = {σij}N×N with σij = 0.1|i−j|, allowing cross-
sectional dependence over components. Consider K0 = 2 and define the group-specific coeffi-
cients as

αgi
(τ) =

{
0.49 cos(πτ), i ∈ G1,
−0.2, i ∈ G2,

αgigj
(τ) =

{
0.5 − τ, if i, j ∈ G1,
τ3 − 0.5, otherwise.

The group membership is generated as follows: assign each node i ∈ {1, . . . ,N} to G1 and G2

with respective probabilities 0.65 and 0.35. Note that there exists a further group structure on
the time-varying spillover effects αgigj

(·) with M0 = 2, as described in Stage 2 of Section 3.1.
In the simulation, we consider two scenarios for generating the group membership: (i) fixed
group, i.e., the group membership is only generated once and remains the same over replications;
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and (ii) random group, i.e., the group membership is randomly generated for each replication.
We conduct the simulation over R = 1000 replications and set N = 100, 200, T = 300, 600, and
w̄ = 0.025, 0.075.

We use the Epanechnikov kernel in the local linear smoothing, where the bandwidth is deter-
mined by the rule of thumb (Su & Wang 2017): h = (2.35/

√
12)T−1/5 for the fully heterogenous

local linear estimation (3.2) and h† = (2.35/
√

12)[card(Ĝj)T ]
−1/5 for the post-grouping estimation

(4.1), where Ĝj denotes the estimated group. We notice that the clustering results are insensitive
to the bandwidth choice in our simulation. For each simulated data set, we first estimate the
group membership and number as in Section 3, and then conduct the post-grouping estimation
as in Section 4. To evaluate the group structure estimation accuracy, we adopt the following two
measurements:

AC(K0) =
1
R

R∑
r=1

I(K̂r = K0) and Purity(G ) =
1
RN

R∑
r=1

K̂r∑
k=1

max
1⩽j⩽K0

∣∣∣Ĝk,r ∩ Gj

∣∣∣ ,
where K̂r and Ĝk,r denote the estimates of the group number and membership in the r-th repli-
cation. The purity quantity Purity(G ) is a simple and transparent evaluation measure with value
close to one when the clustering method is precise. To compare the estimation performance be-
tween the pre-grouping local linear estimation and the post-grouping one, we compute the root
mean squared errors for the estimated momentum and spillover effects:

RMSEM,r =

{
1
NS

N∑
i=1

S∑
s=1

∣∣∣β̃r,i(τs) − βi(τs)
∣∣∣2}1/2

,

RMSES,r =

{
1
NS

N∑
i=1

S∑
s=1

∣∣∣β̃∗
r,i•(τs) − β∗

i•(τs)
∣∣∣2
2

}1/2

,

where β∗
i•(·) = (βij(·) : j ∈ Ni)

⊺

, β̃r,i(·) and β̃∗
r,i•(·) stand for the estimates in the r-th replication,

τs = 0.05, 0.1, · · · , 0.95 and S = 19.

The simulation results are summarized in Tables 1 and 2. The numbers in parentheses of Table
2 are standard deviations of RMSEM,r and RMSES,r over 1000 replications. It follows from Table
1 that both AC(K0) and Purity(G ) converge to one as the time series length T increases from 300
to 600, and the results remain stable when the sparsity level w̄ changes from 0.025 to 0.075. Table
2 shows that the post-grouping time-varying coefficient estimation substantially outperforms the
pre-grouping one, confirming that the estimation accuracy is significantly improved by making
use of the estimated group structure. The standard deviations are generally small, indicating
that the nonparametric estimation performance is stable over replications. In addition, both the
pre-grouping and post-grouping local linear estimates deteriorate when w̄ increases from 0.025
to 0.075.
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Table 1: Estimation performance of the group number and membership

Fixed group Random group
Sparsity Measurement T \N 100 200 100 200
w̄ = 0.025 AC(K0) 300 1.000 0.995 0.999 0.997

600 1.000 1.000 1.000 1.000
Purity(G ) 300 0.997 0.996 0.996 0.995

600 1.000 1.000 1.000 1.000

w̄ = 0.075 AC(K0) 300 0.999 0.989 0.989 0.993
600 1.000 1.000 1.000 1.000

Purity(G ) 300 0.988 0.958 0.985 0.955
600 1.000 1.000 1.000 0.999

Table 2: Estimation performance of the time-varying momentum and network spillover effects

Fixed group Random group
RMSEM RMSES RMSEM RMSES

Sparsity Estimation T \N 100 200 100 200 100 200 100 200
w̄ = 0.025 Pre-grouping 300 0.148 0.316 0.330 0.768 0.189 0.312 0.419 0.745

(0.023) (0.015) (0.011) (0.012) (0.027) (0.019) (0.038) (0.037)
600 0.078 0.211 0.234 0.493 0.116 0.223 0.295 0.515

(0.023) (0.014) (0.007) (0.006) (0.026) (0.016) (0.025) (0.025)
Post-grouping 300 0.035 0.048 0.107 0.118 0.036 0.047 0.108 0.117

(0.010) (0.007) (0.004) (0.003) (0.011) (0.008) (0.004) (0.003)
600 0.021 0.024 0.077 0.081 0.021 0.026 0.078 0.082

(0.004) (0.003) (0.002) (0.002) (0.004) (0.003) (0.002) (0.002)
w̄ = 0.075 Pre-grouping 300 0.399 0.751 0.967 2.268 0.424 0.768 1.075 2.333

(0.023) (0.129) (0.015) (0.020) (0.034) (0.146) (0.063) (0.083)
600 0.289 0.505 0.660 1.450 0.306 0.509 0.729 1.457

(0.014) (0.048) (0.009) (0.010) (0.019) (0.047) (0.038) (0.042)
Post-grouping 300 0.062 0.102 0.125 0.156 0.063 0.104 0.126 0.157

(0.013) (0.019) (0.004) (0.003) (0.015) (0.020) (0.005) (0.004)
600 0.032 0.049 0.086 0.099 0.033 0.050 0.086 0.100

(0.003) (0.004) (0.003) (0.002) (0.004) (0.005) (0.003) (0.003)
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Table 3: Measurements of the (scaled) break point estimation

Fixed group Random group
Sparsity T \N 100 200 100 200
w̄ = 0.025 400 -0.002 (0.031) -0.003 (0.033) -0.001 (0.032) -0.003 (0.033)

800 -0.001 (0.016) -0.002 (0.017) -0.002 (0.016) 0.000 (0.017)
w̄ = 0.075 400 -0.003 (0.033) -0.002 (0.034) -0.003 (0.034) -0.002 (0.034)

800 -0.001 (0.017) 0.000 (0.017) 0.000 (0.017) -0.001 (0.017)

6.2 Simulation study with a break in the group structure

We next examine the numerical performance of the estimation method with a break in the group
structure introduced in Section 5. The break point is set at t0 = ⌊T/2⌋+ 1 when we re-assign each
node i to G1 and G2 with respective probabilities 0.65 and 0.35. This results in a break in the group
membership. Before the break time, the data generating process is the same as that in Section 6.1,
whereas, after the break, the group-specific time-varying coefficients are defined as

αgi
(τ) =

{
−0.49 sin(πτ/2), i ∈ G1,
0.49 sin(πτ/2), i ∈ G2,

αgigj
(τ) =

{
0.49 sin(πτ/2), if i, j ∈ G1,
−0.49 sin(πτ/2), otherwise.

As in Section 6.1, we consider both the fixed and random groups when generating the group
membership (with a break) over R = 1000 replications. In order to obtain stable finite-sample
performance, we slightly increase T from (300, 600) to (400, 800). The number of nodes remains
as N = 100 and 200.

The one-sided version of the Epanechnikov kernel function is adopted in our nonparametric
method. We first estimate the break point via (5.7), compute the (scaled) measurement ∆t0 =

(̂t − t0)/T , and then report the means and standard deviations (in parentheses) of ∆t0 in Table 3.
It is clear that the scaled break point t0/T can be accurately detected, and its estimation accuracy
is not sensitive to the sparsity level of the adjacency matrix W. With the estimated break point,
we may split the entire time period into the "pre-break" and "post-break" periods and compute
their respective AC(K0) and Purity(G ). We further take a simple average of those values over the
two periods and report them in Table 4. We note that both the group number and membership
are estimated very accurately even when there exists a break in the group structure. We finally
compare the estimation performance between the pre-grouping and post-grouping local linear
estimation after the break point is detected. When computing RMSEM and RMSES, we choose
τs = 0.05, 0.1, . . . , 0.4 for the “pre-break" period and τs = 0.6, 0.65, . . . , 0.95 for the “post-break"
period, avoiding possible boundary effect in the estimation. The general pattern in Table 5 is
very similar to that in Table 2, again confirming the significant advantage of the post-grouping
estimation.

Appendix F in the online supplement (Li et al 2024) contains extra simulation results: the
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Table 4: Estimation performance of the group number and membership (with a break)

Fixed group Random group
Sparsity Measurement T \N 100 200 100 200
w̄ = 0.025 AC(K0) 400 1.000 1.000 1.000 1.000

800 1.000 1.000 1.000 1.000
Purity(G ) 400 0.999 0.999 0.999 0.998

800 1.000 1.000 1.000 1.000

w̄ = 0.075 AC(K0) 400 0.994 0.966 0.993 0.968
800 1.000 1.000 1.000 1.000

Purity(G ) 400 0.996 0.982 0.995 0.983
800 1.000 1.000 1.000 1.000

Table 5: Estimation performance of the time-varying coefficients with a break in the group struc-
ture

Fixed group Random group
RMSEM RMSES RMSEM RMSES

Sparsity Estimation T \N 100 200 100 200 100 200 100 200
w̄ = 0.025 Pre-grouping 400 0.490 0.562 0.553 0.785 0.477 0.545 0.569 0.765

(0.006) (0.010) (0.007) (0.008) (0.020) (0.016) (0.027) (0.028)
800 0.485 0.490 0.521 0.622 0.461 0.494 0.515 0.627

(0.004) (0.005) (0.005) (0.006) (0.020) (0.016) (0.021) (0.020)
Post-grouping 400 0.032 0.040 0.093 0.101 0.034 0.040 0.095 0.101

(0.006) (0.006) (0.003) (0.002) (0.009) (0.007) (0.003) (0.002)
800 0.020 0.023 0.067 0.071 0.021 0.024 0.068 0.072

(0.003) (0.002) (0.002) (0.002) (0.004) (0.003) (0.002) (0.002)
w̄ = 0.075 Pre-grouping 400 0.613 1.023 0.930 1.890 0.636 1.035 0.998 1.910

(0.026) (0.070) (0.012) (0.015) (0.027) (0.066) (0.046) (0.058)
800 0.535 0.730 0.731 1.260 0.538 0.743 0.759 1.291

(0.008) (0.021) (0.008) (0.008) (0.017) (0.027) (0.029) (0.033)
Post-grouping 400 0.046 0.075 0.106 0.126 0.050 0.075 0.108 0.126

(0.010) (0.016) (0.004) (0.003) (0.011) (0.016) (0.004) (0.004)
800 0.026 0.038 0.074 0.083 0.028 0.038 0.074 0.083

(0.003) (0.003) (0.002) (0.002) (0.004) (0.005) (0.002) (0.002)
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finite-sample performance of the clustering algorithm introduced in Appendix A on estimating
the homogeneity structure for the network spillover effects, and the clustering result by using
Zhu, Xu & Fan (2023)’s grouped network VAR model with constant coefficients.

6.3 An Empirical Study

There has been increasing interest in investigating the spatial pattern of climate data, see, for
example, Portmann, Solomon & Hegerl (2009), Kendon et al (2020), Hanlon et al (2021) and the
references therein. We next apply the proposed model and methodology to analyze a set of UK
climate data, exploring the network and latent group structures and allowing for smooth struc-
tural changes to account for possible climate changes in the past few decades. The data that we
use are collected from the UK Meteorological Office,3 containing temperature recordings (in Cel-
sius) of 37 weather stations with their geographical locations presented in Figure 1. The original
dataset collects minimum and maximum temperatures per month over the period from January
1950 to February 2023. Hence, the time series length is T = 878. We consider the following two
scenarios when building the network VAR model: (i) both the minimum and maximum temper-
atures are used as elements of Xt; (ii) the averaged temperature per month is used as elements of
Xt. In model (ii), each weather station is treated as a node and N = 37; whereas in model (i), the
minimum and maximum recordings in each weather station are treated as two nodes and N = 74.
The time series observations are standardized to have zero mean and unit standard deviation.
The adjacency matrix W is constructed by following the UK climate region map4. Specifically, it is
classified into the following five regions: Southern England, Northern England, Wales, Scotland,
and Northern Ireland. When stations i and j are in the same region, we set wij = 1, otherwise,
wij = 0. Consequently, the percentage of non-zero elements of the adjacency matrix is 0.0559 and
0.2267 for the two models.

The primary interest of this empirical study lies in identifying potential group structure over
the weather stations to achieve dimension reduction in the subsequent network VAR model esti-
mation. With the clustering algorithm in Section 3, we obtain two estimated groups, i.e., K̂ = 2,
for both models. Table 6 reports the estimated group membership which is very similar between
the two models. For model (i), all the stations of Group 1 are in Northern Ireland and Wales,
while those of Group 2 are in England and Scotland. This indicates that Northern Ireland and
Wales often have common patterns in terms of temperature change whereas the weather stations
in the island of Great Britain usually have similar temperature recordings. It is noteworthy that,
although each weather station in model (i) contains the minimum and maximum temperatures
(as two nodes), both nodes are classified into the same group (thus we only report the station
name in Table 6). For model (ii), three weather stations in the coastal towns (Eastbourne, Tiree
and Whitby) move from Group 2 to Group 1. The estimated time-varying coefficient functions

3https://www.metoffice.gov.uk/research/climate/maps-and-data/historic-station-data
4https://www.metoffice.gov.uk/research/climate/maps-and-data/about/regions-map
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Figure 1: Geographical locations of the UK weather stations

are plotted in the online supplement (Li et al 2024).

To further show the necessity of accounting for the group structure and smooth structural
changes, we compare the out-of-sample prediction performance among the following three meth-
ods: fully heterogeneous time-varying network VAR model (Yin, Safikhani & Michailidis 2024);
the proposed grouped time-varying network VAR model; and the grouped network VAR model
with constant coefficients (Zhu, Xu & Fan 2023), denoted by "fully heterogeneous", "grouped+TV"
and "grouped+linear", respectively, in Table 7. We leave the last Tpre observations out for predic-
tion, where Tpre = 12, 24 and 36, corresponding to one, two and three years, respectively. For any
time point t• in the prediction (or test) period, we use the observations over t = 1, · · · , t• − 1 to
get the estimates of time-varying or constant coefficients, which are subsequently used to forecast
the value of Xt• . We conduct this expanding-window one-step ahead forecasting exercise for all
the three models and report their out-of-sample RMSE in Table 7. It follows from Table 7 that our
proposed model produces the most accurate out-of-sample forecasting results with much smaller
RMSE than the other two competing methods.

7 Conclusion

In this paper we have introduced a general nonlinear network VAR model for high-dimensional
time series, where the momentum and network spillover effects are allowed to change over time
and nodes. To achieve dimension reduction and obtain satisfactory estimation convergence rates,
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Table 6: The estimated group membership using the UK temperature time series

Model Group 1 Group 2

Model (i) Aberporth Bradford Eskdalemuir Newton Rigg Stornoway
Armagh Braemar Heathrow Oxford Sutton Bonington
Ballypatrick Camborne Hurn Paisley Tiree
Cardiff Cambridge Lerwick Ringway Waddington
Cwmystwyth Chivenor Leuchars Ross-on-wye Whitby
Valley Dunstaffnage Lowestoft Shawbury Wick Airport

Durham Manston Sheffield Yeovilton
Eastbourne Nairn Southampton

Model (ii) Aberporth Bradford Eskdalemuir Nairn Sheffield
Armagh Braemar Heathrow Newton Rigg Southampton
Ballypatrick Camborne Hurn Oxford Stornoway
Cardiff Cambridge Lerwick Paisley Sutton Bonington
Cwmystwyth Chivenor Leuchars Ringway Waddington
Valley Dunstaffnage Lowestoft Ross-on-wye Wick Airport
Eastbourne Durham Manston Shawbury Yeovilton
Tiree
Whitby

Table 7: Comparison of out-of-sample RMSE

Model Tpre = 12 Tpre = 24 Tpre = 36

Model (i): fully heterogeneous 0.939 1.048 1.030
Model (i): grouped+TV 0.609 0.618 0.624
Model (i): grouped+linear 1.113 1.102 1.086

Model (ii): fully heterogeneous 0.711 0.703 0.773
Model (ii): grouped+TV 0.684 0.686 0.709
Model (ii): grouped+linear 1.124 1.110 1.083
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we impose a latent group structure on time-varying coefficients in the heterogenous network VAR
model. The unknown group number is determined by an easy-to-implement criterion whereas
the group membership is estimated by the agglomerative clustering algorithm with the nonpara-
metrically estimated distance matrix. Theorems 3.1 and 3.2 show that the developed methodol-
ogy consistently estimates the latent group structure. To further improve the convergence rates of
the time-varying coefficient estimation, we have proposed a post-grouping local linear smooth-
ing to estimate the group-specific time-varying momentum and network effects. In addition, we
further extend the model, methodology and theory to allow for structural breaks in either the
group structure or group-specific coefficient functions. The simulation study demonstrates that
(i) the developed method can accurately estimate the latent group structure in finite samples;
(ii) the post-grouping local linear estimation significantly outperforms the naive heterogenous
estimation which ignores the latent structure; and (iii) the developed two-stage method can ac-
curately locate the break point and estimate the group structure before and after the break. The
empirical study of the UK temperature time series shows that there exist two groups over the 37
UK weather stations and our proposed method has better out-of-sample prediction performance
than the other two competing methods which ignore either the grouped or time-varying feature
in network VAR model building.
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A Cluster analysis of heterogenous network effects

Let βij(·) = αgigj
(·) be the heterogenous time-varying network spillover effects defined as in

Section 3.1. Due to the homogeneity structure for βij(·), (i, j) ∈ ¯NN, there exists a partition of the
index pair set ¯NN, denoted by G ◦ = {G ◦

1 , · · · , G ◦
M0

}, such that

G ◦
i ∩ G ◦

j = ∅, 1 ⩽ i ̸= j ⩽ M0, βij(·) = β◦
m(·) for (i, j) ∈ G ◦

m, (A.1)

where M0 is a finite positive integer upper bounded by G2
0. Neither the group membership G ◦

nor the group number M0 is known a priori. Define the distance between index pairs (i1, j1) and
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(i2, j2):

D̃(i1j1)(i2j2) =
1
L

L∑
l=1

∣∣∣β̂i1j1(τ
∗
l) − β̂i2j2(τ

∗
l)
∣∣∣ ,

where β̂ij(·) and τ∗l are defined in Section 3.1. With D̃(i1j1)(i2j2) as the entries, we may further
construct an N̄× N̄ distance matrix denoted by D̃, where N̄ = | ¯NN|. Assuming the group number
as M, we adopt the agglomerative hierarchical clustering algorithm described in Section 3.1 with
the distance matrix D̃, terminate it when the group number reaches M, and denote the resulting
group estimates as G̃ ◦

1|M, · · · , G̃ ◦
M|M.

As in Section 3.2, we pool the estimated heterogenous time-varying network spillover effects
over (i, j) ∈ G̃ ◦

m|M:

β̃m|M(τ) =
1∣∣∣G̃ ◦

m|M

∣∣∣
∑

(i,j)∈G̃ ◦
m|M

β̂ij(τ),

and define the average deviation:

R̃(M) =
1

ML

M∑
m=1

1∣∣∣G̃ ◦
m|M

∣∣∣
∑

(i,j)∈G̃ ◦
m|M

L∑
l=1

∣∣∣β̂ij(τ
∗
l) − β̃m|M(τ∗l)

∣∣∣ .
The group number M0 is estimated by the following ratio criterion:

M̂ = argmin
1⩽M⩽M

R̃(M)

R̃(M− 1)
, (A.2)

where M is a pre-specified positive integer. With the above consistent group number number esti-
mate, we again run the agglomerative clustering algorithm, terminate it when the group number
reaches M̂, and denote the final estimates of group membership by Ĝ ◦

m, m = 1, · · · , M̂, from
which we obtain the group label estimates ĝij = m if (i, j) ∈ Ĝ ◦

m ∩ ¯NN.

Proposition A.1. Suppose that the conditions of Theorems 3.1 and 3.2 hold. Then

P
(
M̂ = M0

)
→ 1, P

({
Ĝ ◦
m, 1 ⩽ m ⩽ M̂

}
=

{
G ◦
m, 1 ⩽ m ⩽ M0

})
→ 1. (A.3)

The above proposition establishes the consistency properties of the group number estimate
M̂ and the membership estimate Ĝ ◦

m, m = 1, · · · , M̂. The finite-sample performance of these
estimators is reported in Appendix F of the online supplement (Li et al 2024).
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Online Supplement to “Estimation of Grouped Time-Varying
Network Vector Autoregression Models"

This supplemental material contains five appendices: Appendix B gives the proof of (2.8) in Remark
1(ii) and discusses connection of the proposed model to the nonlinear functional dependence measure;
Appendix C provides the proofs of main theorems; Appendix D includes the proofs of some technical
lemmas; Appendix E discusses a refined estimation of the break location; and Appendix F reports some
extra numerical results. Unless explicitly stated differently, all the assumptions, equations, propositions,
remarks, theorems and sections mentioned in this supplemental material refer to those presented in the
main text. Throughout the supplement, we let C,C1,C2, · · · denote some generic positive constants.

B Theoretical justification of Remark 1(ii)

In this appendix, we first provide the proof of (2.8) in Remark 1(ii) and then discuss the nonlinear functional
dependence measure introduced by Wu (2005).

Proof of (2.8) in Remark 1(ii). The proof is similar to the proof of Lemma A.1 in Zhang & Wu (2021). It
follows from (2.4) in Assumption 1(i) that there exists 0 < χ0 < 1 such that

∥|Xt − X◦
t |∞∥q =

∥∥∣∣B(τt) [Xt−1 − X◦
t−1(τt)

]∣∣∞∥∥q
⩽ χ0

∥∥∣∣Xt−1 − X◦
t−1(τt)

∣∣∞∥∥q . (B.1)

Letting
Ξt−1,1 =

∥∥∣∣Xt−1 − X◦
t−1(τt−1)

∣∣∞∥∥q and Ξt−1,2 =
∥∥∣∣X◦

t−1(τt−1) − X◦
t−1(τt)

∣∣∞∥∥q ,

and using (B.1) and the triangle inequality, we obtain

∥|Xt − X◦
t |∞∥q ⩽ χ0 (Ξt−1,1 + Ξt−1,2) . (B.2)

For any 0 ⩽ τ, τ∗ ⩽ 1, by the smoothness condition in Assumption 1(i) and (2.7), we may show that

∥|X◦
t(τ) − X◦

t(τ
∗)|∞∥q =

∥∥∣∣B(τ)X◦
t−1(τ) − B(τ∗)X◦

t−1(τ
∗)
∣∣∞∥∥q

⩽
∥∥∣∣B(τ)X◦

t−1(τ) − B(τ∗)X◦
t−1(τ)

∣∣∞∥∥q +∥∥∣∣B(τ∗)X◦
t−1(τ) − B(τ∗)X◦

t−1(τ
∗)
∣∣∞∥∥q

⩽ C1
∥∥∣∣X◦

t−1(τ)
∣∣∞∥∥q |τ− τ∗|+ χ0

∥∥∣∣X◦
t−1(τ) − X◦

t−1(τ
∗)
∣∣∞∥∥q

⩽ C1θN,q|τ− τ∗|+ χ0
∥∥∣∣X◦

t−1(τ) − X◦
t−1(τ

∗)
∣∣∞∥∥q ,

indicating that

∥|X◦
t(τ) − X◦

t(τ
∗)|∞∥q ⩽

C1θN,q|τ− τ∗|

1 − χ0

1



and thus
Ξt−1,2 ⩽

C1

1 − χ0
·
θN,q

T
. (B.3)

By virtue of (B.2) and (B.3), we readily have that

∥|Xt − X◦
t |∞∥q ⩽ χ0

∥∥∣∣Xt−1 − X◦
t−1
∣∣∞∥∥q +

C1χ0

1 − χ0
·
θN,q

T
. (B.4)

With (B.4), using the argument similar to the proof of Lemma 4.5 in Dahlhaus, Richter & Wu (2019), we
have

max
1⩽t⩽T

∥|Xt − X◦
t |∞∥q ⩽

C1χ0

(1 − χ0)2 ·
θN,q

T
,

completing the proof of (2.8). □

We next connect the grouped time-varying network VAR model to the nonlinear functional dependence
measure introduced by Wu (2005), facilitating the development of our main asymptotic theory. Let {ε∗t} be
an independent copy of {εt} and F

{l}
t = (· · · , εl−1, ε∗l , εl+1, · · · , εt) be a coupled version of Ft replacing

εl by ε∗l . Letting X
◦{l}
t (τ) = G(τ, F {l}

t ), as in Zhang & Wu (2021), we define the node-wise functional
dependence measure:

δi,t,q = sup
τ∈[0,1]

∥∥∥x◦i,t(τ) − x
◦{0}
i,t (τ)

∥∥∥
q

,

where x◦i,t(τ) and x
◦{0}
i,t (τ) are the i-th element of X◦

t(τ) and X
◦{0}
t (τ), respectively. Furthermore, we construct

the node-wise dependence adjusted norm:

∥xi•∥q,ι = sup
m⩾0

(m+ 1)ι∆i,m,q, ∆i,m,q =

∞∑
t=m

δi,t,q,

where ι ⩾ 0 depicts the decay rate of the cumulative dependence measure ∆i,m,q. Letting Bj
i•(τ) be the

i-th row vector of Bj(τ), by (2.4) in Assumption 1(i), supτ∈[0,1] |B
j
i•(τ)|2 decays at a geometric rate of j and

δi,t,q decays at a geometric rate of t for all i. For simplicity, we may set ι = 1 and write ∥xi•∥q = ∥xi•∥q,1.
Then we have max1⩽i⩽N ∥xi•∥q ⩽ C2, where C2 is a positive constant.

C Proofs of the main asymptotic theorems

We next provide the detailed proofs of the main asymptotic theorems in the main text.

C.1 Proof of Theorem 3.1

To prove (3.10), we only need to show that

P
(

max
1⩽k⩽K0

max
i,j∈Gk

D̂ij < min
1⩽k̸=l⩽K0

min
i∈Gk,j∈Gl

D̂ij

)
→ 1 (C.1)

2



as T tends to infinity. Define

Dij =

∫ 1

0
dij(τ)dτ with dij(τ) =

∣∣βi(τ) − βj(τ)
∣∣+ ∣∣β◦

i•(τ) − β◦
j•(τ)

∣∣
2 .

Notice that Dij = 0 if i, j ∈ Gk, and

ζ
†
NT = min

1⩽k̸=l⩽K0
min

i∈Gk,j∈Gl

Dij > 0.

Hence, to prove (C.1), it is sufficient to show that

max
1⩽i ̸=j⩽N

∣∣D̂ij −Dij

∣∣ = oP

(
ζ
†
NT

)
. (C.2)

Letting Dij =
1
L

∑L
l=1 dij(τ

∗
l ), we have∣∣D̂ij −Dij

∣∣ ⩽ ∣∣D̂ij −Dij

∣∣+ ∣∣Dij −Dij

∣∣.
By the definition of the Riemann integral and Assumption 1(i), we readily have that

max
1⩽i ̸=j⩽N

∣∣Dij −Dij

∣∣ = O (1/L) = o
(
ζ
†
NT

)
, (C.3)

where 1/L = o(ζ†NT ) in Assumption 3 has been used.

By Proposition A.1, without loss of generality, we may assume that M̂ = M0 and Ĝ ◦
m = G ◦

m, m =

1, · · · ,M0, hold w.p.a.1 in the remaining proof. By the triangle inequality, we have

∣∣D̂ij −Dij

∣∣ = ∣∣∣∣1L
L∑

l=1

[
d̂ij(τ

∗
l ) − dij(τ

∗
l )
] ∣∣∣∣

⩽
1
L

L∑
l=1

∣∣∣∣∣∣β̂i(τ
∗
l ) − β̂j(τ

∗
l )
∣∣− ∣∣βi(τ

∗
l ) − βj(τ

∗
l )
∣∣∣∣∣∣+

1
L

L∑
l=1

∣∣∣∣∣∣β̂◦
i•(τ

∗
l ) − β̂◦

j•(τ
∗
l )
∣∣
2 −

∣∣β◦
i•(τ

∗
l ) − β◦

j•(τ
∗
l )
∣∣
2

∣∣∣∣
⩽

1
L

L∑
l=1

∣∣β̂i(τ
∗
l ) − βi(τ

∗
l )
∣∣+ 1

L

L∑
l=1

∣∣β̂j(τ
∗
l ) − βj(τ

∗
l )
∣∣+

1
L

L∑
l=1

∣∣β̂◦
i•(τ

∗
l ) − β◦

i•(τ
∗
l )
∣∣
2 +

1
L

L∑
l=1

∣∣β̂◦
j•(τ

∗
l ) − β◦

j•(τ
∗
l )
∣∣
2,

which, together with Lemmas D.3 and D.4 and Assumption 3, leads to

max
1⩽i ̸=j⩽N

∣∣D̂ij −Dij

∣∣ = OP

(√
n̄ log(N∨ T)

Th
+
√
n̄h2

)
= oP

(
ζ
†
NT

)
. (C.4)
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With (C.3) and (C.4), we complete the proof of (C.2). □

C.2 Proof of Theorem 3.2

Let EG denote the event that {Ĝ1, · · · , ĜK0

}
=

{
G1, · · · , GK0}. It follows from Theorem 3.1 that P(EG ) → 1.

Hence, to prove Theorem 3.2, it is sufficient to show that

P
(
K̂ = K0 | EG

)
→ 1. (C.5)

By the definition of K̂, we only need to show that

P

(
R̂(K0)

R̂(K0 − 1)
= min

1⩽K⩽K

R̂(K)

R̂(K− 1)
| EG

)
→ 1. (C.6)

To prove (C.6), we next consider the following two scenarios: (i) 1 ⩽ K ⩽ K0 − 1 and (ii) K0 + 1 ⩽ K ⩽ K,
corresponding to the under-fitted and over-fitted grouped time-varying network VAR models, respectively.
For the case K0 + 1 ⩽ K ⩽ K, conditional on the event EG , by Lemma D.5(i), we have R̂(K) = oP(ρNT ) for
K = K0 + 1, · · · ,K. Consequently, we may set R̂(K) ≡ 0 w.p.a.1, and

P

(
R̂(K)

R̂(K− 1)
=

0
0
≡ 1, K = K0 + 1, · · · ,K

∣∣ EG

)
→ 1. (C.7)

For the case 1 ⩽ K ⩽ K0 − 1, conditional on EG , by Lemma D.5(ii), we have R̂(K) ⩾ cζ
†
NT w.p.a.1 with c

being a positive constant strictly larger than zero. Hence, there exists a positive constant c∗ such that

P

(
R̂(K)

R̂(K− 1)
⩾ c∗, K = 1, · · · ,K0 − 1

∣∣ EG

)
→ 1, (C.8)

setting R̂(1)
R̂(0)

= 1, and

P

(
R̂(K0)

R̂(K0 − 1)
= 0

∣∣ EG

)
→ 1. (C.9)

With (C.7)–(C.9), we prove (C.6), completing the proof of Theorem 3.2. □

C.3 Proof of Theorem 4.1

By the consistency properties in Theorem 3.2 and Corollary 3.3, we may prove the asymptotic distribution
theory conditional on K̂ = K0 and Ĝk = Gk, k = 1, · · · ,K0. For k = 1, · · · ,K0, let

ΞkX(τ) =
1

card(Gk)Th†

T∑
t=1

∑
i∈Gk

[
X⋄
i,t−1X

⋄⊺
i,t−1K

†
t0(τ) X⋄

i,t−1X
⋄⊺
i,t−1K

†
t1(τ)

X⋄
i,t−1X

⋄⊺
i,t−1K

†
t1(τ) X⋄

i,t−1X
⋄⊺
i,t−1K

†
t2(τ)

]
,

4



Ξkα(τ) =
1

card(Gk)Th†

T∑
t=1

∑
i∈Gk

[
X⋄
i,t−1X

⋄⊺
i,t−1

[
αk•(τt) − αk•(τ) − α′

k•(τ)(τt − τ)
]
K
†
t0(τ)

X⋄
i,t−1X

⋄⊺
i,t−1

[
αk•(τt) − αk•(τ) − α′

k•(τ)(τt − τ)
]
K
†
t1(τ)

]
,

Ξkε(τ) =
1

card(Gk)Th†

T∑
t=1

∑
i∈Gk

[
X⋄
i,t−1εi,tK

†
t0(τ)

X⋄
i,t−1εi,tK

†
t1(τ)

]
, K

†
tκ(τ) =

(
τt − τ

h†

)κ

K

(
τt − τ

h†

)
.

By the definition of the post-grouping local linear estimation defined in (4.2), we have

α̌k•(τ) − αk•(τ) = E• · Ξ−1
kX(τ) [Ξkα(τ) + Ξkε(τ)]

conditional on K̂ = K0 and Ĝk = Gk, k = 1, · · · ,K0, where E• =
(
IK0+1, O(K0+1)×(K0+1)

)
. In order to prove

(4.4), we only need to show that

ΞkX(τ)
P−→ diag {1,µ2}⊗∆Gk

(τ), (C.10)

Ξkα(τ) =

[
1
2h

2
†µ2∆Gk

(τ)α′′
k•(τ)

0

]
+ oP(h

2
†), (C.11)

[
card(Gk)Th†

]1/2
Ξkε(τ)

d−→ N (0, diag {ν0,ν2}⊗ΥGk
(τ)) , (C.12)

where ⊗ denotes the Kronecker product between matrices.

By Lemma D.6 and the approximation result (2.8), we can prove (C.10). By the smoothness condition
in Assumption 1(i), Taylor’s expansion of αk•(·) and (C.10), we can prove (C.11). We next turn to the proof
of (C.12). Let

WGk,t(τ) =
[
W

⊺

Gk,t(τ, 0),W
⊺

Gk,t(τ, 1)
]⊺

with
WGk,t(τ, κ) =

1√
card(Gk)

∑
i∈Gk

εi,tX
⋄
i,t−1K

†
tκ(τ),

and write √
card(Gk)Th†Ξkε(τ) =

1√
Th†

T∑
t=1

WGk,t(τ).

Using Lemma D.6 and the approximation (2.8), we have

1
Th†

T∑
t=1

E
[
WGk,t(τ, 0)W

⊺

Gk,t(τ, 0)|Ft−1
]

=
1

card(Gk)

∑
i,j∈Gk

σij

[
1

Th†

T∑
t=1

X⋄
i,t−1X

⋄⊺
i,t−1K

‡
t,0(τ)

]
P−→ ν0

card(Gk)

∑
i,j∈Gk

σij∆
⋄
ij(τ).
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Similarly, we can also prove that

1
Th†

T∑
t=1

E
[
WGk,t(τ, 1)W

⊺

Gk,t(τ, 1)|Ft−1
] P−→ ν2

card(Gk)

∑
i,j∈Gk

σij∆
⋄
ij(τ),

and
1

Th†

T∑
t=1

E
[
WGk,t(τ, 0)W

⊺

Gk,t(τ, 1)|Ft−1
]
= oP(1).

Hence, we have

1
Th†

T∑
t=1

E
[
WGk,t(τ)W

⊺

Gk,t(τ)|Ft−1
] P−→ diag {ν0,ν2}⊗

1
card(Gk)

∑
i,j∈Gk

σij∆
⋄
ij(τ),

which, together with (4.3) and the martingale central limit theorem (e.g., Hall & Heyde 1980), leads to
(C.12). The proof of Theorem 4.1 is completed. □

C.4 Proof of Theorem 5.1

Let

Γ
l,ε
it =

1
Th‡

T∑
s=1

X̃i,s−1εi,sK
‡
(
τt − τs

h‡

)
, Γ

r,ε
it =

1
Th‡

T∑
s=1

X̃i,s−1εi,sK
‡
(
τs − τt

h‡

)
,

β
‡,l
i•(τt) =

(
Γ̃

l
it

)−1 (
Γ

l
it − Γ

l,ε
it

)
, β

‡,r
i•(τt) =

(
Γ̃

r
it

)−1 (
Γ

r
it − Γ

r,ε
it

)
.

Define
δβ,i(t) = β

‡,r
i•(τt) − β

‡,l
i•(τt) and δβ,i(t) = β

‡,r
i•(τt) − β

‡,l
i•(τt).

By Assumption 2(ii) and 6(i)(ii), we may show that

δβ,i(t) = δ̃β,i(t) +OP(h‡) (C.13)

uniformly over i = 1, · · · ,N, where

δ̃β,i(t) =


0, t > t0 + Th‡ or t < t0 − Th‡,[
1 − gl

i

(
t0−t
Th‡

)]
δβ,i(t0), t0 − Th‡ ⩽ t < t0,[

1 − gr
i

(
t−t0
Th‡

)]
δβ,i(t0), t0 < t ⩽ t0 + Th‡,

δβ,i(t0), t = t0,

and gl
i(·) and gr

i(·) are positive functions satisfying gl
i(0) = gr

i(0) = 0, gl
i(1) = gr

i(1) = 1 and

min
1⩽i⩽N

{gl
i(x),g

r
i(x)} ⩾ c0x, 0 < x < 1,

6



with c0 being a positive constant.

Writing

δβ(t) =
[
δβ,1(t), · · · , δβ,N(t)

]⊺
and δ̃β(t) =

[
δ̃β,1(t), · · · , δ̃β,N(t)

]⊺
,

by (C.13) and the triangle inequality, we have∣∣δβ(t0)
∣∣∞ −

∣∣δβ(t)∣∣∞ ⩾
∣∣δ̃β(t0)

∣∣∞ −
∣∣δ̃β(t)∣∣∞ −OP(h‡)

⩾ c0

∣∣∣∣t− t0

Th‡

∣∣∣∣ · δβ(t0) −OP(h‡) (C.14)

when t0 − Th‡ ⩽ t ⩽ t0 + Th‡, and otherwise∣∣δβ(t0)
∣∣∞ −

∣∣δβ(t)∣∣∞ ⩾
∣∣δβ(t0)

∣∣∞ −OP(h‡).

Following the proofs of Lemma D.1 and (D.28) in Appendix D, we may show that

max
1⩽i⩽N

max
1⩽t⩽T

∣∣∣∣(Γ̃ l
it

)−1
Γ

l,ε
it

∣∣∣∣
2
= OP

(√
n̄ log(N∨ T)

Th‡

)
, (C.15)

max
1⩽i⩽N

max
1⩽t⩽T

∣∣∣∣(Γ̃r
it

)−1
Γ

r,ε
it

∣∣∣∣
2
= OP

(√
n̄ log(N∨ T)

Th‡

)
. (C.16)

By the definition of t̂, we have δ̂β(̂t) ⩾ δ̂β(t0), which, together with (C.15), (C.16) and the triangle inequal-
ity, leads to

∣∣δβ(t0)
∣∣∞ −

∣∣δβ(̂t)∣∣∞ ⩽ δ̂β(t0) − δ̂β(̂t) +OP

(√
n̄ log(N∨ T)

Th‡

)

⩽ OP

(√
n̄ log(N∨ T)

Th‡

)
. (C.17)

By virtue of (C.14) and (C.17), we readily have that

c0

∣∣∣∣∣ t̂− t0

Th‡

∣∣∣∣∣ · δβ(t0) = OP

(√
n̄ log(N∨ T)

Th‡
+ h‡

)
,

which completes the proof of (5.8) as δβ(t0) is bounded away from zero in Assumption 6(iii).

We next turn to the proof of Theorem 5.1(ii). Let

T ◦
1 = {1, 2, · · · , t0} and T ◦

2 = {t0 + 1, t0 + 2, · · · , T }.

It follows from (5.8) that
P(T1 ⊂ T ◦

1 ) → 1 and P(T2 ⊂ T ◦
2 ) → 1,

indicating that the group structure is time invariant w.p.a.1 over the two separate time periods T1 and T2.
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Following the proofs of Theorems 3.1, 3.2 and Corollary 3.3, we can prove Theorem 5.1(ii). Details are
omitted to save the space. □

C.5 Proof of Proposition A.1

Since the proof is analogous to the arguments used in the proofs of Theorems 3.1 and 3.2, we next only
sketch the proof.

In the first step, we need to prove that

P
({

Ĝ ◦
m, 1 ⩽ m ⩽ M0

}
=

{
G ◦
m, 1 ⩽ m ⩽ M0

})
→ 1. (C.18)

For the index pairs (i1, j1) and (i2, j2) taken from ¯NN, recall

D̃(i1j1)(i2j2) =
1
L

L∑
l=1

∣∣∣β̂i1j1(τ
∗
l ) − β̂i2j2(τ

∗
l )
∣∣∣ ,

and define

D(i1j1)(i2j2) =
1
L

L∑
l=1

∣∣βi1j1(τ
∗
l ) − βi2j2(τ

∗
l )
∣∣ .

By (3.9) in Assumption 3, in order to prove (C.18), it is sufficient to show that

max
(i1,j1),(i2,j2)∈ ¯NN

∣∣∣D̃(i1j1)(i2j2) −D(i1j1)(i2j2)

∣∣∣ = oP

(
ζ
‡
NT

)
. (C.19)

With Lemma D.3 and (3.9), following the proof of (C.2), we can easily prove (C.19).

In the second step, we need to prove that

P
(
M̂ = M0 | E

◦
G

)
→ 1, (C.20)

where E ◦
G denotes the event that {Ĝ ◦

m, 1 ⩽ m ⩽ M0} = {G ◦
m, 1 ⩽ m ⩽ M0}. The proof of (C.20) is similar to

the proof of (C.5).

In the final step, combining (C.18) and (C.20), we readily have that

P
({

Ĝ ◦
m, 1 ⩽ m ⩽ M̂

}
=

{
G ◦
m, 1 ⩽ m ⩽ M0

})
→ 1,

completing the proof of Proposition A.1. □
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D Technical lemmas with proofs

We next prove some technical lemmas which have been used to prove the asymptotic theorems in Ap-
pendix C. For any 1 ⩽ i ⩽ N, we define

ΓiX(τ) =

[
1

Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1Kt0(τ)
1

Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1Kt1(τ)
1

Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1Kt1(τ)
1

Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1Kt2(τ)

]

=:

[
ΓiX(τ, 0) ΓiX(τ, 1)
ΓiX(τ, 1) ΓiX(τ, 2)

]
,

Γiβ(τ) =

[
1

Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1

[
βi•(τt) − βi•(τ) − β′

i•(τ)(τt − τ)
]
Kt0(τ)

1
Th

∑T
t=1 X̃i,t−1X̃

⊺

i,t−1

[
βi•(τt) − βi•(τ) − β′

i•(τ)(τt − τ)
]
Kt1(τ)

]

=:

[
Γiβ(τ, 0)
Γiβ(τ, 1)

]
,

Γiε(τ) =

[
1

Th

∑T
t=1 X̃i,t−1εi,tKt0(τ)

1
Th

∑T
t=1 X̃i,t−1εi,tKt1(τ)

]
=:

[
Γiε(τ, 0)
Γiε(τ, 1)

]
,

where Ktq(τ) =
(
τt−τ
h

)q
K
(
τt−τ
h

)
. From the definition of β̂i•(·) in (3.3), we write

β̂i•(τ) − βi•(τ) = E∗ · Γ−1
iX(τ)

[
Γiβ(τ) + Γiε(τ)

]
, (D.1)

where E∗ =
(
Ini+1, O(ni+1)×(ni+1)

)
. As in the previous proofs, we let C denote a generic positive constant

whose value may change from one place to another.

Lemma D.1. Suppose that Assumptions 1 and 2(i)–(iv) and (2.7) in the main text are satisfied. Then we have

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣ΓiX(τ) − Γ
†
iX(τ)

∣∣∣
F
= OP

(√
n̄2 log(N∨ T)

Th

)
, (D.2)

and

Γ
†
iX(τ) =

 1
T

∑T
t=1 E

(
X̃i,t−1X̃

⊺

i,t−1

)
Kt0(τ)

1
T

∑T
t=1 E

(
X̃i,t−1X̃

⊺

i,t−1

)
Kt1(τ)

1
T

∑T
t=1 E

(
X̃i,t−1X̃

⊺

i,t−1

)
Kt1(τ)

1
T

∑T
t=1 E

(
X̃i,t−1X̃

⊺

i,t−1

)
Kt2(τ)


is positive definite uniformly over τ ∈ [0, 1].

Proof of Lemma D.1. We start with the proof of (D.2). We only prove the uniform convergence for ΓiX(·, 0)
since the proofs for the other block-matrices ΓiX(·, 1) and ΓiX(·, 2) are exactly the same. Let

∆̂iT (τ) = ΓiX(τ, 0), ∆
†
i(τ) =

1
T

T∑
t=1

E
[
X̃i,t−1X̃

⊺

i,t−1

]
Kt0(τ) =

1
T

T∑
t=1

∆i,t−1Kt0(τ), (D.3)

9



where ∆i,t is defined as in Assumption 2(ii). Hence, we only show that

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂iT (τ) −∆
†
i(τ)

∣∣∣
F
= OP

(√
n̄2 log(N∨ T)

Th

)
. (D.4)

As ∣∣∣∆̂iT (τ) −∆
†
i(τ)

∣∣∣
F
⩽ ni

∣∣∣∆̂iT (τ) −∆
†
i(τ)

∣∣∣∞ ⩽ n̄
∣∣∣∆̂iT (τ) −∆

†
i(τ)

∣∣∣∞ ,

it is sufficient to show that

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂iT (τ) −∆
†
i(τ)

∣∣∣∞ = OP

(√
log(N∨ T)

Th

)
. (D.5)

Let

∆̂
◦
iT (τ) =

1
T

T∑
t=1

X̃◦
i,t−1X̃

◦⊺
i,t−1Kt0(τ), ∆◦

i (τ) =
1
T

T∑
t=1

E
[
X̃◦
i,t−1X̃

◦⊺
i,t−1

]
Kt0(τ),

where X̃◦
i,t is defined similarly to X̃i,t but with elements in Xt replaced by those in X◦

t . By Lemma D.2
below, to prove (D.5), we only need to show that

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂◦
iT (τ) −∆◦

i (τ)
∣∣∣∞ = OP

(√
log(N∨ T)

Th

)
. (D.6)

Let Ṽi,t = X̃◦
i,t−1X̃

◦⊺
i,t−1. We consider covering the closed interval [0, 1] by some disjoint sub-intervals Ib

with centres τb and length γNT = h2
√

log(N∨ T)/Th/ξNT , 1 ⩽ b ⩽ B, where ξNT = T (q−2)/[2(q+2)] [h log(N∨ T)]1/2.
The number of sub-intervals, B, is upper bounded by ξNT/(h

3/2
√

log(N∨ T)/T). Observe that

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂◦
iT (τ) −∆◦

i (τ)
∣∣∣∞ ⩽ max

1⩽i⩽N
max

1⩽b⩽B

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
Kt0(τb)

∣∣∣∣∣∞ +

max
1⩽i⩽N

max
1⩽b⩽B

sup
τ∈Ib

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
[Kt0(τ) − Kt0(τb)]

∣∣∣∣∣∞ ,

We first prove that

max
1⩽i⩽N

max
1⩽b⩽B

sup
τ∈Ib

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
[Kt0(τ) − Kt0(τb)]

∣∣∣∣∣∞
= OP

(√
log(N∨ T)

Th

)
. (D.7)

Let
Ṽ
†
i,t = Ṽi,tI

{
|Ṽi,t|∞ ⩽ ξNT

}
and Ṽ

‡
i,t = Ṽi,t − Ṽ

†
i,t.
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By Assumption 2(i), we readily have that

max
1⩽b⩽B

sup
τ∈Ib

|Kt0(τ) − Kt0(τb)| = OP

(
γNTh

−2) .

Hence, we may show that

max
1⩽i⩽N

max
1⩽b⩽B

sup
τ∈Ib

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
[Kt0(τ) − Kt0(τb)]

∣∣∣∣∣∞
⩽ γNTh

−2

{
max

1⩽i⩽N

1
T

T∑
t=1

∣∣∣Ṽ†
i,t − E[Ṽ†

i,t]
∣∣∣∞ + max

1⩽i⩽N

1
T

T∑
t=1

∣∣∣Ṽ‡
i,t − E[Ṽ‡

i,t]
∣∣∣∞

}

= OP

(√
log(N∨ T)

Th

)
+ γNTh

−2 max
1⩽i⩽N

1
T

T∑
t=1

∣∣∣Ṽ‡
i,t − E[Ṽ‡

i,t]
∣∣∣∞ . (D.8)

It follows from (2.7) in the main text that

max
1⩽i⩽N

max
1⩽t⩽T

∥∥∥|Ṽi,t|∞∥∥∥q/2

q/2
⩽ θ

q
N,q, (D.9)

which, together with the Markov inequality, indicates that, for any η > 0,

P

(
max

1⩽i⩽N

1
T

T∑
t=1

∣∣∣Ṽ‡
i,t − E[Ṽ‡

i,t]
∣∣∣∞ > ηξNT

)
⩽

N∑
i=1

T∑
t=1

P
(∣∣∣Ṽi,t

∣∣∣∞ > ξNT

)
= O

(
NTθ

q
N,qξ

−q/2
NT

)
= o(1), (D.10)

where the last equality is due to (3.7) in Assumption 2(iii). With (D.8) and (D.10), we complete the proof of
(D.6).

It remains to show that

max
1⩽i⩽N

max
1⩽b⩽B

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
Kt0(τb)

∣∣∣∣∣∞ = Op

(√
log(N∨ T)

Th

)
. (D.11)

Letting Ṽi,t(τ) = Ṽi,tKt0(τ) for notational simplicity, as K(·) has the support [−1, 1],

T∑
t=1

Ṽi,t(τ) =

T2(τ)∑
t=T1(τ)

Ṽi,t(τ) =

T2(τ)∑
t=T1(τ)

X̃◦
i,t−1X̃

◦⊺
i,t−1Kt0(τ),

where T1(τ) = ⌊Tτ⌋ − ⌊Th⌋ + 1 and T2(τ) = ⌊Tτ⌋ + ⌊Th⌋. We next adopt some standard techniques in
the literature on high-dimensional locally stationary processes (e.g., Zhang & Wu 2021) to prove (D.11).
Let M = 2⌊Th⌋,M† = ⌊logM/ log 2⌋,ul = 2l for 1 ⩽ l ⩽ M† − 1 and uM† = M. Define Ṽi,t,u(τ) =

11



E[Ṽi,t(τ)
∣∣F t−1

t−u] with F t
s = (εs, · · · , εt), and

Si,l,T (τ) =

T2(τ)∑
t=T1(τ)

[
Ṽi,t,ul

(τ) − Ṽi,t,ul−1(τ)
]

, l = 1, · · · ,M†.

Then, for any 1 ⩽ i ⩽ N and 1 ⩽ b ⩽ B, we may decompose

1
Th

T∑
t=1

{
Ṽi,t − E

[
Ṽi,t

]}
Kt0(τb) =

T2(τb)∑
t=T1(τb)

{
Ṽi,t(τb) − E

[
Ṽi,t(τb)

]}

=
1
Th

 T2(τb)∑
t=T1(τb)

[
Ṽi,t(τb) − Ṽi,t,M(τb)

]
+

M†∑
l=2

Si,l,T (τb)+

T2(τb)∑
t=T1(τb)

{
Ṽi,t,2(τb) − E

[
Ṽi,t,2(τb)

]} . (D.12)

We next separately tackle the three terms on the right side of (D.12). Since

Ṽi,t(τ) − Ṽi,t,M(τ) =

∞∑
k=M+1

[
Ṽi,t,k(τ) − Ṽi,t,k−1(τ)

]
,

we have ∥∥∥∥∥∥
∣∣∣∣∣

T2(τb)∑
t=T1(τb)

[
Ṽi,t(τb) − Ṽi,t,M(τb)

] ∣∣∣∣∣∞
∥∥∥∥∥∥
q/2

=

∥∥∥∥∥∥
∣∣∣∣∣

T2(τb)∑
t=T1(τb)

∞∑
k=M+1

[
Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

] ∣∣∣∣∣∞
∥∥∥∥∥∥
q/2

⩽ C

∞∑
k=M+1

∥∥∥∥∥∥
∣∣∣∣∣

T2(τb)∑
t=T1(τb)

[
Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

] ∣∣∣∣∣∞
∥∥∥∥∥∥
q/2

.

Note that, for any 1 ⩽ i ⩽ N, 1 ⩽ b ⩽ B and k ⩾ M+ 1, vec(Ṽi,t,k(τb) − Ṽi,t,k−1(τb)), T1(τ) ⩽ t ⩽ T2(τ), is
a sequence of martingale difference vectors. By Lemma D.3 of Zhang & Wu (2021), we have

∞∑
k=M+1

∥∥∥∥∥∥
∣∣∣∣∣

T2(τb)∑
t=T1(τb)

(
Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

) ∣∣∣∣∣∞
∥∥∥∥∥∥
q/2

=

∞∑
k=M+1

∥∥∥∥∥∥
∣∣∣∣∣

T2(τb)∑
t=T1(τb)

vec
(
Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

) ∣∣∣∣∣∞
∥∥∥∥∥∥
q/2
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⩽ C

∞∑
k=M+1

√√√√√ T2(τb)∑
t=T1(τb)

∥∥∥∥∣∣∣∣vec
(
Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

) ∣∣∣∣∞
∥∥∥∥2

q/2

= C

∞∑
k=M+1

√√√√√ T2(τb)∑
t=T1(τb)

∥∥∥∥∣∣∣∣Ṽi,t,k(τb) − Ṽi,t,k−1(τb)

∣∣∣∣∞
∥∥∥∥2

q/2
.

With the triangle inequality, ∥∥∥∣∣∣Ṽi,t,k(τb) − Ṽi,t,k−1(τb)
∣∣∣∞∥∥∥q/2

=

∥∥∥∥∣∣∣∣E(Ṽi,t(τb) − Ṽ
{t−k}
i,t (τb)

∣∣F t−1
t−k

) ∣∣∣∣∞
∥∥∥∥
q/2

⩽

∥∥∥∥∣∣∣∣ (X̃◦
i,t−1 − X̃

◦{t−k}
i,t−1

)
X̃

⊺

i,t−1Kt0(τb)

∣∣∣∣∞
∥∥∥∥
q/2

+∥∥∥∥∣∣∣∣X̃◦{t−k}
i,t−1

(
X̃◦
i,t−1 − X̃

◦{t−k}
i,t−1

)⊺

Kt0(τb)

∣∣∣∣∞
∥∥∥∥
q/2

,

where Ṽ
{l}
i,t (τ) = X̃

◦{l}
i,t−1X̃

◦{l}⊺

i,t−1Kt0(τ) and

X̃
◦{l}
i,t =

[(
w̃ijx

◦{l}
j,t : j ∈ Ni

)⊺

, x◦{l}i,t

]⊺
with x

◦{l}
i,t being the i-th element of X◦{l}

t = X
◦{l}
t (τt) defined in Appendix B. Following the discussion in

Appendix B and noting that
∑

j∈Ni
w̃ij = 1, we have∥∥∥∣∣∣X̃◦

i,t−1 − X̃
◦{t−k}
i,t−1

∣∣∣∞∥∥∥q ⩽ δi,k−1,q +
∑
j∈Ni

w̃ijδj,k−1,q,

and ∥∥∥∣∣∣X̃◦
i,t−1Kt0(τb)

∣∣∣∞∥∥∥q ⩽
∞∑

k=0

∥∥∥∥∣∣∣∣ [E(X̃◦
i,t−1

∣∣Ft−k−1) − E(X̃◦
i,t−1

∣∣Ft−k−2)
]
Kt0(τb)

∣∣∣∣∞
∥∥∥∥
q

⩽ C

∞∑
k=0

δi,k,q +
∑
j∈Ni

w̃ijδj,k,q


⩽ C max

1⩽i⩽N
∥xi•∥q,ι

which is bounded, where Ft = (· · · , εt−1, εt) as in Section 2 of the main text. As discussed in Appendix B,
we set ι = 1 in the rest of the proof. By the Jensen and Cauchy-Schwarz inequalities, we have∥∥∥∣∣∣(X̃◦

i,t−1 − X̃
◦{t−k}
i,t−1

)
X̃◦⊺
i,t−1Kt0(τb)

∣∣∣∞∥∥∥q/2
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⩽
∥∥∥∣∣∣X̃◦

i,t−1 − X̃
◦{t−k}
i,t−1

∣∣∣∞∥∥∥q ·
∥∥∥∣∣∣X̃◦

i,t−1Kt0(τb)
∣∣∣∞∥∥∥q

⩽ C

δi,k−1,q +
∑
j∈Ni

w̃ijδj,k−1,q

 ,

and similarly,

∥∥∥∥∣∣∣∣X̃◦{t−k}
i,t−1

(
X̃◦
i,t−1 − X̃

◦{t−k}
i,t−1

)⊺

Kt0(τb)

∣∣∣∣∞
∥∥∥∥
q/2

⩽ C

δi,k−1,q +
∑
j∈Ni

w̃ijδj,k−1,q

 .

Since M = 2⌊Th⌋, we have

∞∑
k=M+1

√√√√√ T2(τb)∑
t=T1(τb)

∥∥∥∣∣∣Ṽi,t,k(τb) − Ṽi,t,k−1(τb)
∣∣∣∞∥∥∥2

q/2

⩽ C(Th)1/2
∞∑

k=M+1

δi,k−1,q +
∑
j∈Ni

w̃ijδj,k−1,q


= C(Th)1/2

∆i,M,q +
∑
j∈Ni

w̃ij∆j,M,q


⩽ C(Th)−1/2 max

1⩽i⩽N
∥xi•∥q,1 , (D.13)

where the last inequality is due to the fact that

max
1⩽i⩽N

∆i,M,q ⩽ M−1 max
1⩽i⩽N

∥xi•∥q,1

using the definition of ∥xi•∥q,ι and setting ι = 1. Then, by (D.13) and the Markov inequality, we have for
any z > 0,

P

∣∣∣∣∣∣
T2(τb)∑

t=T1(τb)

[
Ṽi,t(τb) − Ṽi,t,M(τb)

]∣∣∣∣∣∣∞ > z

 ⩽
C

zq/2(Th)q/4 max
1⩽i⩽N

∥xi•∥
q/2
q,1 , (D.14)

where C is a positive constant independent of 1 ⩽ i ⩽ N and 1 ⩽ b ⩽ B.

We next turn to the second term on the right side of (D.12). For each 2 ⩽ l ⩽ M†, define

Ui,k,l(τ) =

(kul+T1(τ))∧T2(τ)∑
t=(k−1)ul+T1(τ)

[
Ṽi,t,ul

(τ) − Ṽi,t,ul−1(τ)
]

, 1 ⩽ k ⩽ ⌈M/ul⌉,

and
Se
i,l,T (τ) =

∑
k is even

Ui,k,l(τ), So
i,l,T (τ) =

∑
k is odd

Ui,k,l(τ).

Let λl = (l − 1)−2/(π2/3) if 2 ⩽ l ⩽ M†/2 and λl = (M† + 1 − l)−2/(π2/3) if M†/2 < l < M†. It is easy to

14



verify that
∑M†

l=2 λl ⩽ 1. Since Ui,k1,l(τ) and Ui,k2,l(τ) are independent for |k1 − k2| > 1, by Lemma D.4 of
Zhang & Wu (2021), we have, for any z > 0,

P
(∣∣Se

i,l,T (τb)
∣∣∞ ⩾ λlz

)
⩽ C

(
(λlz)

−q/2
∑

k is even

E
[
|Ui,k,l(τb)|

q/2∞
]
+

exp

−
(λlz)

2

C
∑

k is even
E [|Ui,k,l(τb)|2∞]


 ,

where 2 ⩽ l ⩽ M†. Similarly to the proof of (D.13), we may show that

∥|Ui,j,l(τ)|∞∥q/2 ⩽ C · u−1/2
l max

1⩽i⩽N
∥xi•∥q,1

and
∥|Ui,j,l(τ)|∞∥2 ⩽ C · u−1/2

l max
1⩽i⩽N

∥xi•∥4,1 .

Similar results also hold for |So
i,l,T (τ)|∞ with details omitted to save space. A combination of the above

arguments yields that

P

∣∣∣∣∣∣
M†∑
l=2

Si,l,T (τb)

∣∣∣∣∣∣∞ ⩾ 2z

 ⩽
M†∑
l=2

P (|Si,l,T (τb)|∞ ⩾ 2λlz)

⩽
M†∑
l=2

P
(
|Se

i,l,T (τb)|∞ ⩾ λlz
)
+

M†∑
l=2

P
(
|So

i,l,T (τb)|∞ ⩾ λlz
)

⩽ C

 Th

zq/2 ·
M†∑
l=2

u
−(q/4+1)
l λ

−q/2
l

(
max

1⩽i⩽N
∥xi•∥

q/2
q,1

)
+

M†∑
l=2

exp

−
λ2
lu

2
lz

2

C(Th) max
1⩽i⩽N

∥xi•∥2
4,1


 .

Making use of the fact that
∑M†

l=2 λ
−q/2
l u

−(q/4+1)
l is bounded and minl⩾1 λ

2
lu

2
l > 0, we have

P

∣∣∣∣∣∣
M†∑
l=2

Si,l,T (τb)

∣∣∣∣∣∣∞ ⩾ 2z

 ⩽ C

(
Th

zq/2

(
max

1⩽i⩽N
∥xi•∥

q/2
q,1

)
+

exp

{
−

z2

C(Th)

(
max

1⩽i⩽N
∥xi•∥2

4,1

)−1
})

, (D.15)

where C is a positive constant independent of 1 ⩽ i ⩽ N and 1 ⩽ b ⩽ B.
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We next tackle the third term on the right side of (D.12). Note that

Ṽi,t,2(τ) − E
[
Ṽi,t,2(τ)

]
=

t∑
s=−∞

{
E
[
Ṽi,t,2(τ)

∣∣Fs−1

]
− E

[
Ṽi,t,2(τ)

∣∣Fs−2

]}
.

For any s, by the triangle and Jensen inequalities, we have∥∥∥∥∣∣∣∣E [Ṽi,t,2(τb)
∣∣Fs−1

]
− E

[
Ṽi,t,2(τb)

∣∣Fs−2

] ∣∣∣∣∞
∥∥∥∥
q/2

⩽
∥∥∥∣∣∣(X̃◦

i,t−1 − X̃
◦{s−1}
i,t−1

)
X̃◦⊺
i,t−1Kt0(τb)

∣∣∣∞∥∥∥q/2
+

∥∥∥∥∣∣∣∣X̃◦{s−1}
i,t−1

(
X̃◦
i,t−1 − X̃

◦{s−1}
i,t−1

)⊺

Kt0(τb)

∣∣∣∣∞
∥∥∥∥
q/2

⩽ C

δi,t−s,q +
∑
j∈Ni

w̃ijδj,t−s,q

 .

Consequently,

∥∥∥∣∣∣Ṽi,t,2(τb) − E
[
Ṽi,t,2(τb)

]∣∣∣∞∥∥∥q/2
⩽ C

t∑
s=−∞

δi,t−s,q +
∑
j∈Ni

w̃ijδj,t−s,q

 ⩽ C max
1⩽i⩽N

∆i,0,q,

and
T2(τb)∑

t=T1(τb)

∥∥∥∣∣∣Ṽi,t,2(τb) − E
[
Ṽi,t,2(τb)

]∣∣∣∞∥∥∥q/2

q/2
⩽ C(Th) max

1⩽i⩽N
∥xi•∥q/2

q,α . (D.16)

Note that Ṽi,t1,2(τ) and Ṽi,t2,2(τ) are independent when |t1 − t2| > 2. Following the proof of (D.15) and
using (D.16), we have

P

∣∣∣∣ T2(τb)∑
t=T1(τb)

{
Ṽi,t,2(τb) − E

[
Ṽi,t,2(τb)

]} ∣∣∣∣∞ ⩾ z


⩽ C

(
Th

zq/2

(
max

1⩽i⩽N
∥xi•∥

q/2
q,1

)
+ exp

{
−

z2

C(Th)

(
max

1⩽i⩽N
∥xi•∥2

4,1

)−1
})

, (D.17)

where C is a positive constant independent of 1 ⩽ i ⩽ N and 1 ⩽ b ⩽ B.

By virtue of (D.12), (D.14), (D.15) and (D.17), we readily have that

P

(∣∣∣∣∣
T∑

t=1

{
Ṽi,t − E[Ṽi,t]

}
Kt0(τb)

∣∣∣∣∣∞ > z

)

⩽ C

(
Th

zq/2

(
max

1⩽i⩽N
∥xi•∥

q/2
q,1

)
+ exp

{
−

z2

C(Th)

(
max

1⩽i⩽N
∥xi•∥2

4,1

)−1
})

. (D.18)

As discussed in Appendix B, ∥xi•∥q,1 +∥xi•∥4,1 is bounded uniformly over i. Setting z = η
√
Th log(N∨ T)
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in (D.18), we may show that, for any η > 0,

P

(
max

1⩽i⩽N
max

1⩽b⩽B

∣∣∣∣∣ 1
Th

T∑
t=1

{
Ṽi,t − E[Ṽi,t]

}
Kt0(τb)

∣∣∣∣∣∞ > η

√
log(N∨ T)

Th

)

⩽
N∑
i=1

B∑
b=1

P

(∣∣∣∣∣
T∑

t=1

{
Ṽi,t − E[Ṽi,t]

}
Kt0(τb)

∣∣∣∣∣∞ > η
√
Th log(N∨ T)

)

= O
(
NB exp

{
−Cη2 log(N∨ T)

})
+O

(
NB

ηq/2(Th)q/4−1(log(N∨ T))q/4

)
. (D.19)

Noting that B diverge at a certain polynomial rate of T and letting η be sufficiently large, the first order on
the right side of (D.19) converges to zero. By (3.7) in Assumption 2(iii), we may show that the second order
also converges to zero. The proof of (D.11) is completed.

By Assumption 2(i)(ii), it is easy to show that Γ†
iX(τ) is positive definite uniformly over 0 ⩽ τ ⩽ 1. The

proof of Lemma D.1 is completed. □

Lemma D.2. Suppose that Assumptions 1 and 2(i)(iii) and (2.7) in the main text are satisfied. Let

∆̂
◦
iT (τ) =

1
T

T∑
t=1

X̃◦
i,t−1X̃

◦⊺
i,t−1Kt0(τ), ∆◦

i (τ) =
1
T

T∑
t=1

E
[
X̃◦
i,t−1X̃

◦⊺
i,t−1

]
Kt0(τ),

where X̃◦
i,t is defined similarly to X̃i,t in Section 3.1 but with elements in Xt replaced by those in X◦

t . Then we have

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂iT (τ) − ∆̂
◦
iT (τ)

∣∣∣∞ = oP

(√
log(N∨ T)

Th

)
(D.20)

and

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆†
i(τ) −∆◦

i (τ)
∣∣∣∞ = o

(√
log(N∨ T)

Th

)
, (D.21)

where ∆̂iT (τ) and ∆
†
i(τ) are defined in (D.3).

Proof of Lemma D.2. With (2.7), by slightly modifying the proof of (2.8) in Appendix B, we may show that

max
0⩽t⩽T−1

∥|Xt − X◦
t |∞∥q = O

(
θN,q/T

)
. (D.22)

By (2.7), (D.22), the classic cr- and Cauchy-Schwarz inequalities, we have

max
1⩽i⩽N

max
1⩽t⩽T

∥∥∥∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞∥∥∥q/2

q/2

⩽ C max
1⩽i⩽N

max
1⩽t⩽T

∥∥∥∣∣∣X̃i,t−1 − X̃◦
i,t−1

∣∣∣∞∥∥∥q/2

q

[∥∥∥∣∣∣X̃i,t−1

∣∣∣∞∥∥∥q/2

q
+
∥∥∥∣∣∣X̃◦

i,t−1

∣∣∣∞∥∥∥q/2

q

]
⩽ C max

0⩽t⩽T−1
∥|Xt − X◦

t |∞∥q/2
q

[
∥|Xt|∞∥q/2

q + ∥|X◦
t |∞∥q/2

q

]
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= O
(
θ
q
N,qT

−q/2
)

. (D.23)

With (D.23), the Bonferroni and Markov inequalities and (3.7) in Assumption 2(iii), we may show that, for
any η > 0,

P

(
max

1⩽i⩽N
max

1⩽t⩽T

∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞ > η

√
log(N∨ T)

Th

)

⩽
N∑
i=1

T∑
t=1

P

(∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞ > η

√
log(N∨ T)

Th

)

⩽

(
η2 log(N∨ T)

Th

)−q/4 N∑
i=1

T∑
t=1

∥∥∥∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞∥∥∥q/2

q/2

⩽ Cη−q/2 ·
Nθ

q
N,qh

q/4

Tq/4−1[log(N∨ T)]q/4 = o(1),

indicating that

max
1⩽i⩽N

max
1⩽t⩽T

∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞ = oP

(√
log(N∨ T)

Th

)
. (D.24)

By (D.24) and Assumption 2(i), we may show that

max
1⩽i⩽N

sup
0⩽τ⩽1

∣∣∣∆̂iT (τ) − ∆̂
◦
iT (τ)

∣∣∣∞
⩽ max

1⩽i⩽N
sup

0⩽τ⩽1

1
T

T∑
t=1

∣∣∣X̃i,t−1X̃
⊺

i,t−1 − X̃◦
i,t−1X̃

◦⊺
i,t−1

∣∣∣∞ Kt0(τ)

⩽ max
1⩽i⩽N

max
1⩽s⩽T

∣∣∣X̃i,s−1X̃
⊺

i,s−1 − X̃◦
i,s−1X̃

◦⊺
i,s−1

∣∣∣∞ sup
0⩽τ⩽1

1
T

T∑
t=1

Kt0(τ)

= oP

(√
log(N∨ T)

Th

)
,

completing the proof of (D.20). With (D.24) and Assumption 2(i), we can also prove (D.21). □

In the following lemma, we derive the uniform consistency of the local linear estimation of the het-
erogenous time-varying coefficient functions defined in (3.3).

Lemma D.3. Suppose that Assumptions 1 and 2(i)–(iv) and (2.7) in the main text are satisfied. Letting β̂i•(·) be
defined in (3.3), we have

max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣β̂i•(τ
∗
l ) − βi•(τ

∗
l )
∣∣∣
2
= OP

(
√
n̄

(√
log(N∨ T)

Th
+ h2

))
, (D.25)

where the number of grid points L satisfies L = O(T).
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Proof of Lemma D.3. By Lemma D.1 and Assumptions 1(i) and 2(ii), we may show that

max
1⩽i⩽N

max
1⩽l⩽L

λmax

(
Γ−1
iX(τ

∗
l )
)
= OP(1) (D.26)

and
max

1⩽i⩽N
max

1⩽l⩽L

∣∣∣Γ−1
iX(τ

∗
l )Γiβ(τ

∗
l )
∣∣∣
2
= OP

(√
n̄h2

)
. (D.27)

In view of (D.26) and (D.27), in order to prove (D.25), we only need to show that

max
1⩽i⩽N

max
1⩽l⩽L

|Γiε(τ
∗
l )|2 = OP

(√
n̄ log(N∨ T)

Th

)
.

As in the proof of Lemma D.1, to save the space, we only provide the proof of

max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

X̃i,t−1εi,tKt0(τ
∗
l )

∣∣∣∣∣
2

= OP

(√
n̄ log(N∨ T)

Th

)
. (D.28)

We next use the truncation technique and the concentration inequality for martingale to prove (D.28).
Let ξNT = T (q−2)/[2(q+2)] [h log(N∨ T)]1/2 be defined as in the proof of Lemma D.1, W̃i,t = X̃i,t−1εi,t,

W̃
†
i,t = X̃i,t−1εi,tI

{
|X̃i,t−1|∞ ⩽ ξ

1/2
NT , |εi,t| ⩽ ξ

1/2
NT

}
and W̃

‡
i,t = W̃i,t − W̃

†
i,t.

Note that

max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

X̃i,t−1εi,tKt0(τ
∗
l )

∣∣∣∣∣
2

⩽ max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

{
W̃

†
i,t − E

[
W̃

†
i,t

]}
Kt0(τ

∗
l )

∣∣∣∣∣
2

+

max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

{
W̃

‡
i,t − E

[
W̃

‡
i,t

]}
Kt0(τ

∗
l )

∣∣∣∣∣
2

.

For any η > 0, by the Markov inequality, Assumptions 1(ii) and 2(iii), and noting that

max
1⩽i⩽N

max
0⩽t⩽T−1

∥∥∥|X̃i,t|∞∥∥∥q
q
⩽ θ

q
N,q,

we have

P

(
max

1⩽i⩽N
max

1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

{
W̃

‡
i,t − E

[
W̃

‡
i,t

]}
Kt0(τ

∗
l )

∣∣∣∣∣
2

> η

√
n̄ log(N∨ T)

Th

)
(D.29)

⩽ P
(

max
1⩽i⩽N

max
0⩽t⩽T−1

|X̃i,t|∞ > ξ
1/2
NT

)
+ P

(
max

1⩽i⩽N
max

1⩽t⩽T
|εi,t| > ξ

1/2
NT

)
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⩽
N∑
i=1

T−1∑
t=0

P
(
|X̃i,t|∞ > ξ

1/2
NT

)
+

N∑
i=1

T∑
t=1

P
(
|εi,t| > ξ

1/2
NT

)
= O

(
NTθ

q
N,qξ

−q/2
NT +NTξ

−q/2
NT

)
= o(1).

By the concentration inequality for martingales (e.g., Freedman 1975), we have

P

(
max

1⩽i⩽N
max

1⩽l⩽L

∣∣∣∣∣ 1
Th

T∑
t=1

{
W̃

†
i,t − E

[
W̃

†
i,t

]}
Kt0(τ

∗
l )

∣∣∣∣∣
2

> η

√
n̄ log(N∨ T)

Th

)

⩽
N∑
i=1

L∑
l=1

P

(∣∣∣∣∣ 1
Th

T∑
t=1

{
W̃

†
i,t − E

[
W̃

†
i,t

]}
Kt0(τ

∗
l )

∣∣∣∣∣
2

> η

√
n̄ log(N∨ T)

Th

)

= O

(
NL exp

{
−
η2(Th) log(N∨ T)

CTh

})
= o(1), (D.30)

by letting η be sufficiently large. With (D.29) and (D.30), we complete the proof of (D.28). □

Lemma D.4. Suppose that the conditions of Lemma D.3 are satisfied and

P
(
M̂ = M0 and Ĝ ◦

m = G ◦
m, 1 ⩽ m ⩽ M0

)
→ 1. (D.31)

Letting β̂◦
i•(·) be defined in (3.4) of the main text, we have

max
1⩽i⩽N

max
1⩽l⩽L

∣∣∣β̂◦
i•(τ

∗
l ) − β◦

i•(τ
∗
l )
∣∣∣
2
= OP

(
√
n̄

(√
log(N∨ T)

Th
+ h2

))
. (D.32)

Proof of Lemma D.4. Define

Eg =
{
ĝij = gij, (i, j) ∈ ¯NN

}
∩
{
M̂ = M0

}
,

where ĝij and ¯NN are defined in Appendix A, and gij is defined in Section 3.1. By (D.31), we readily have
that P(Eg) → 1. Hence, it is sufficient to prove (D.32) conditional on the event Eg. Let ω̂ij,m and ωij,m be
defined as in Section 3.1. Note that

β̂◦
im(τ) =

∑
j∈Ni

β̂ij(τ)ω̂ij,m =
∑
j∈Ni

β̂ij(τ)ωij,m =: β
◦
im(τ) (D.33)

and

β
◦
i•(τ) − β◦

i•(τ) =

∑
j∈Ni

[
β̂ij(τ) − βij(τ)

]
ωij,1, · · · ,

∑
j∈Ni

[
β̂ij(τ) − βij(τ)

]
ωij,M0


⊺

(D.34)

conditional on Eg, where β
◦
i•(τ) =

[
β
◦
i1(τ), · · · ,β◦

iM0
(τ)
]⊺

. Combining (D.33), (D.34) and Lemma D.3, we
can complete the proof of (D.32) conditional on Eg. □
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The following lemma is crucial to prove the consistency property of the ratio criterion.

Lemma D.5. Suppose that the conditions of Theorem 3.2 are satisfied. Define EG as the event that {Ĝ1, · · · , ĜK0

}
={

G1, · · · , GK0}. Then, conditional on EG , we have (i) for K = K0,K0 + 1, · · · ,K, R̂(K) = oP(ρNT ), where ρNT is
defined in Section 3.2; and (ii) for K = 1, · · · ,K0 − 1, R̂(K) ⩾ cζ

†
NT w.p.a.1, where ζ†NT is defined in Assumption 3

and c is a positive constant strictly larger than zero.

Proof of Lemma D.5. For the case K0 ⩽ K ⩽ K, conditional on the event EG , the grouped time-varying
network VAR model is either correctly- or over-fitted. Some of Gk, k = 1, · · · ,K0, are further split into
smaller groups when K > K0. Without loss of generality, we only consider the case of K = K0+1 (conditional
on EG ) and assume that GK0 is split into G †

K0
and G ‡

K0
. It follows from the latent group assumption in Section

2.1 that there exist α◦
k•(·), k = 1, · · · ,K0, such that β◦

i•(·) = α◦
k•(·) when gi = k. By Assumption 4(i) as well

as Lemmas D.3 and D.4, we may show that

R̂(K0 + 1) =
1

L(K0 + 1)

K0−1∑
k=1

1
card(Gk)

∑
i∈Gk

L∑
l=1

[|βi(τ
∗
l ) − αk(τ

∗
l )|+ |β◦

i•(τ
∗
l ) − α◦

k•(τ
∗
l )|2] +

1

L(K0 + 1)card(G †
K0
)

∑
i∈G †

K0

L∑
l=1

[
|βi(τ

∗
l ) − αK0(τ

∗
l )|+

∣∣β◦
i•(τ

∗
l ) − α◦

K0•(τ
∗
l )
∣∣
2

]
+

1

L(K0 + 1)card(G ‡
K0
)

∑
i∈G ‡

K0

L∑
l=1

[
|βi(τ

∗
l ) − αK0(τ

∗
l )|+

∣∣β◦
i•(τ

∗
l ) − α◦

K0•(τ
∗
l )
∣∣
2

]
+

OP

(
√
n̄

(√
log(N∨ T)

Th
+ h2

))

= OP

(
√
n̄

(√
log(N∨ T)

Th
+ h2

))
= oP(ρNT )

conditional on EG . The proof is similar for R̂(K), K = K0,K0 + 2, · · · ,K.

For the case 1 ⩽ K ⩽ K0 − 1, conditional on the event EG , the model is under-fitted and at least two
groups are falsely merged. Without loss of generality, we only consider the case of K = K0 − 1 (conditional
on EG ) and assume that GK0−1 and GK0 are merged. Define

α∗(τ) =
1

card(GK0−1 ∪ GK0)
[|GK0−1|αK0−1(τ) + |GK0 |αK0(τ)]

and
α◦
∗(τ) =

1
card(GK0−1 ∪ GK0)

[
|GK0−1|α

◦
K0−1•(τ) + |GK0 |α

◦
K0•(τ)

]
.

By Assumptions 3 and 4, and Lemmas D.3 and D.4, we can prove that

R̂(K0 − 1) =
1

L(K0 − 1)

K0−2∑
k=1

1
card(Gk)

∑
i∈Gk

L∑
l=1

[|βi(τ
∗
l ) − αk(τ

∗
l )|+ |β◦

i•(τ
∗
l ) − α◦

k•(τ
∗
l )|2] +
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1
L(K0 − 1)card(GK0−1 ∪ GK0)

∑
i∈GK0−1∪GK0

L∑
l=1

[|βi(τ
∗
l ) − α∗(τ

∗
l )|+ |β◦

i•(τ
∗
l ) − α◦

∗(τ
∗
l )|2]

+OP

(
√
n̄

(√
logN∨ T

Th
+ h2

))

= 2
card(GK0−1)card(GK0)

L(K0 − 1)card(GK0−1 ∪ GK0)

L∑
l=1

[
|αK0(τ

∗
l ) − αK0−1(τ

∗
l )|+

∣∣α◦
K0•(τ

∗
l ) − α◦

K0−1•(τ
∗
l )
∣∣
2

]
+OP

(
√
n̄

(√
logN∨ T

Th
+ h2

))
⩾ cξ†NT w.p.a.1,

conditional on EG , where c is a positive constant. The same result also holds for R̂(K), K = 1, · · · ,K0 − 2.
The proof of Lemma D.5 is completed. □

The following lemma is useful to prove the limit distribution theory of the post-grouping local linear
estimation.

Lemma D.6. Suppose that Assumptions 1, 2(i) and 5(i) in the main text are satisfied. Let

∆̌ij,κ(τ) =
1

Th†

T∑
t=1

X⋄
i,t−1X

⋄⊺
i,t−1K

†
tκ(τ), K

†
tκ(τ) =

(
τt − τ

h†

)κ

K

(
τt − τ

h†

)
,

where X⋄
i,t is defined in Section 4.1. Then we have

max
1⩽i,j⩽N

∣∣∆̌ij,κ(τ) − E
[
∆̌ij,κ(τ)

]∣∣
F = OP

(√
log(N∨ T)

Th

)
(D.35)

for κ = 0, 1, 2 and τ ∈ [0, 1].

Proof of Lemma D.6. The proof is similar to the proof of Lemma D.1. Details are omitted here to save
space. □

E Refined estimation of the break point

E.1 Refined estimation methodology

In Section 5 of the main text, we construct an estimation of the break location t0, which is shown to be
consistent with scaling, i.e., ∣∣∣∣∣ t̂− t0

T

∣∣∣∣∣ = oP(1),

see Theorem 5.1(i). Although this consistency property is sufficient to consistently estimate the group mem-
bership and number in the subsequent stage, there is a natural question on whether the precision of the
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break location estimation can be improved. We next aim to tackle this issue by introducing a refined break
point estimation which achieves improvement of the estimation accuracy by making use of the estimated
group structure.

As in Section 4, we define

X̌1
i,t =

∑
j∈Ĝ 1

1

w̃ijxj,t, · · · ,
∑
j∈Ĝ 1

K̂1

w̃ijxj,t, xi,t


⊺

,

X̌2
i,t =

∑
j∈Ĝ 2

1

w̃ijxj,t, · · · ,
∑
j∈Ĝ 2

K̂2

w̃ijxj,t, xi,t


⊺

.

For any t, we use the cross-node regression to estimate the group-specific coefficient functions:

α̌1
k•(τt) =

∑
i∈Ĝ 1

k

X̌1
i,t−1

(
X̌1
i,t−1

)⊺
−1 ∑

i∈Ĝ 1
k

X̌1
i,t−1xi,t, k = 1, · · · , K̂1,

α̌2
k•(τt) =

∑
i∈Ĝ 2

k

X̌2
i,t−1

(
X̌2
i,t−1

)⊺
−1 ∑

i∈Ĝ 2
k

X̌2
i,t−1xi,t. k = 1, · · · , K̂2.

As in Section 4, without loss of generality, we assume

Ĝ 1
k = G 1

k , 1 ⩽ k ⩽ K1, and K̂1 = K1,

Ĝ 2
k = G 2

k , 1 ⩽ k ⩽ K2, and K̂2 = K2.

We expect α̌1
k•(τt) to be a consistent estimate of α1

k•(τt) :=
[
α1
k1(τt), · · · ,α1

kK1
(τt),α1

k(τt)
]⊺

when t ⩽ t0

but this consistency becomes invalid for at least one k when t > t0. Similarly, we expect α̌2
k•(τt) to be a

consistent estimate of α2
k•(τt) :=

[
α2
k1(τt), · · · ,α2

kK2
(τt),α2

k(τt)
]⊺

when t > t0 but the consistency becomes
invalid for at least one k when t ⩽ t0. Define

δ̌α(t) = max
1⩽k⩽K̂1

∣∣α̌1
k•(τt+1) − α̌1

k•(τt)
∣∣
2 + max

1⩽k⩽K̂2

∣∣α̌2
k•(τt+1) − α̌2

k•(τt)
∣∣
2 . (E.1)

The refined break location estimation is then obtained by

ť = argmax
t

δ̌α(t). (E.2)
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E.2 Assumptions and consistency

We next provide some high-level conditions and then derive the consistency property of ť. We start with
the introduction of some notation. Let

X1,⋄
i,t =

∑
g1
j=1

w̃ijxj,t, · · · ,
∑

g1
j=K1

w̃ijxj,t, xi,t


⊺

,

X2,⋄
i,t =

∑
g2
j=1

w̃ijxj,t, · · · ,
∑

g2
j=K2

w̃ijxj,t, xi,t


⊺

,

∆1,⋄
ij,t = E

[
X1,⋄
i,t

(
X1,⋄
j,t

)⊺]
, ∆1,⋄

i,t = ∆1,⋄
ii,t,

∆2,⋄
ij,t = E

[
X2,⋄
i,t

(
X2,⋄
j,t

)⊺]
, ∆2,⋄

i,t = ∆2,⋄
ii,t.

Assumption E.1. (i) Let

∆G 1
k ,t =

1
card(G 1

k)

∑
g1
i=k

∆1,⋄
i,t ∆G 2

k ,t =
1

card(G 2
k)

∑
g2
i=k

∆2,⋄
i,t

be positive definite uniformly over k and t.

(ii) There exist ∆α
G 1
k ,t, k = 1, · · · ,K1, and ∆α

G 2
k ,t, k = 1, · · · ,K2, such that

max
1⩽k⩽K1

max
t0<t⩽T

∣∣∣∣∣∣ 1
card(G 1

k)

∑
g1
i=k

X1,⋄
i,t

∑
j̸=i

α2
g2
ig

2
j
(τt)w̃ijxj,t−1 + α2

g2
i
(τt)xi,t−1

− ∆α
G 1
k ,t

∣∣∣∣∣∣
2

= oP(1),

max
1⩽k⩽K2

max
1<t⩽t0

∣∣∣∣∣∣ 1
card(G 2

k)

∑
g2
i=k

X2,⋄
i,t

∑
j̸=i

α1
g1
ig

1
j
(τt)w̃ijxj,t−1 + α1

g1
i
(τt)xi,t−1

− ∆α
G 2
k ,t

∣∣∣∣∣∣
2

= oP(1).

Assumption E.2. For any group G with cardinality sufficiently large,

max
1⩽t⩽T

E

∣∣∣∣∣∑
i∈G

[
X1,⋄
i,t

(
X1,⋄
i,t

)⊺

−∆1,⋄
i,t

]∣∣∣∣∣
ι

F

+

∣∣∣∣∣∑
i∈G

[
X2,⋄
i,t

(
X2,⋄
i,t

)⊺

−∆2,⋄
i,t

]∣∣∣∣∣
ι

F

 = O
(
[card(G )]ι/2

)
,

max
1⩽t⩽T

E

∣∣∣∣∣∑
i∈G

X1,⋄
i,t−1εi,t

∣∣∣∣∣
ι

2

+

∣∣∣∣∣∑
i∈G

X2,⋄
i,t−1εi,t

∣∣∣∣∣
ι

2

 = O
(
[card(G )]ι/2

)
,

where ι is a positive constant larger than 2. In addition, T/Nι/2 → 0.

Assumption E.3. Let

δα := max
1⩽k⩽K1

∣∣∣α†
k•(τt0+1) − α1

k•(τt0)
∣∣∣
2
+ max

1⩽k⩽K2

∣∣∣α2
k•(τt0+1) − α

‡
k•(τt0)

∣∣∣
2
⩾ c5 > 0
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where

α
†
k•(τt) = ∆−1

G 1
k ,t∆

α
G 1
k ,t, t0 < t ⩽ T ,

α
‡
k•(τt) = ∆−1

G 2
k ,t∆

α
G 2
k ,t, 1 < t ⩽ t0.

Assumption E.1(i) is similar to Assumption 5(ii) in the main text. Meanwhile, a combination of the
conditions in Assumption E.1(i)(ii) ensures that the limits of α̌1

k•(·) and α̌2
k•(·) are well defined even when

groups are misclassified, i.e., α†
k•(·) and α

‡
k•(·) in Assumption E.3 are well defined. Assumption E.2 im-

poses some high-level moment conditions to restrict weak correlation between nodes and indicates that
T can be either smaller or larger than N (depending on the value of ι). Assumption E.3 indicates that the
break size at t0 needs to be bounded away from zero. This condition can be satisfied when there are breaks
in the group-specific coefficient functions, group membership or number. Some examples are provided in
Appendix E.3 to verify this condition.

Proposition E.1. Suppose that the conditions of Theorem 5.1 and Assumptions E.1–E.3 are satisfied. Then we have
P(ť = t0) → 1.

Proof of Proposition E.1. Let E 1
G denote the event that Ĝ 1

k = G 1
k , 1 ⩽ k ⩽ K1, and K̂1 = K1, and let E 2

G

denote the event that Ĝ 2
k = G 2

k , 1 ⩽ k ⩽ K2, and K̂2 = K2. For 1 ⩽ t ⩽ t0, conditional on E 1
G ∩ E 2

G , the
grouped time-varying network VAR model is correctly fitted. Hence, we have

α̌1
k•(τt) =

∑
i∈Ĝ 1

k

X̌1
i,t−1

(
X̌1
i,t−1

)⊺
−1 ∑

i∈Ĝ 1
k

X̌1
i,t−1xi,t

=

∑
i∈G 1

k

X1,⋄
i,t−1

(
X1,⋄
i,t−1

)⊺

−1 ∑
i∈G 1

k

X1,⋄
i,t−1xi,t

= α1
k•(τt) +

∑
i∈G 1

k

X1,⋄
i,t−1

(
X1,⋄
i,t−1

)⊺

−1 ∑
i∈G 1

k

X1,⋄
i,t−1εi,t (E.3)

conditional on E 1
G ∩E 2

G . By Assumptions E.2 and 6(iv) and the Bonferroni and Markov inequalities, we may
show that, for any η > 0

P

 max
1⩽t⩽t0

∣∣∣∣∣∣ 1
card(G 1

k)

∑
i∈G 1

k

X1,⋄
i,t−1εi,t

∣∣∣∣∣∣
2

> η


⩽

t0∑
t=1

P

∣∣∣∣∣∣ 1
card(G 1

k)

∑
i∈G 1

k

X1,⋄
i,t−1εi,t

∣∣∣∣∣∣
2

> η


⩽

t0∑
t=1

[card(G 1
k)]

−ιE

∣∣∣∣∣∣
∑
i∈G 1

k

X1,⋄
i,t−1εi,t

∣∣∣∣∣∣
ι

2
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= O
(
TN−ι/2

)
= o(1),

which leads to

max
1⩽t⩽t0

∣∣∣∣∣∣ 1
card(G 1

k)

∑
i∈G 1

k

X1,⋄
i,t−1εi,t

∣∣∣∣∣∣
2

= oP(1). (E.4)

Similarly, we can also prove that

max
1⩽t⩽t0

∣∣∣∣∣ 1
card(G 1

k)

∑
i∈G

[
X1,⋄
i,t

(
X1,⋄
i,t

)⊺

−∆1,⋄
i,t

]∣∣∣∣∣
F

= oP(1). (E.5)

With (E.3)–(E.5), as K1 is fixed, we readily have that

max
1⩽k⩽K1

max
1⩽t⩽t0

∣∣α̌1
k•(τt) − α1

k•(τt)
∣∣
2 = oP(1). (E.6)

Similarly, by Assumptions E.1 and E.2, we also have

max
1⩽k⩽K1

max
t0+1⩽t⩽T

∣∣∣α̌1
k•(τt) − α

†
k•(τt)

∣∣∣
2
= oP(1), (E.7)

max
1⩽k⩽K1

max
t0+1⩽t⩽T

∣∣α̌2
k•(τt) − α2

k•(τt)
∣∣
2 = oP(1), (E.8)

max
1⩽k⩽K1

max
1⩽t⩽t0

∣∣∣α̌2
k•(τt) − α

‡
k•(τt)

∣∣∣
2
= oP(1). (E.9)

Note that α1
k•(·) and α

‡
k•(·) are continuous over [0, τt0 ] whereas α2

k•(·) and α
†
k•(·) are continuous over

[τt0 , 1]. By virtue of (E.6)–(E.9), we have δ̌α(t) = oP(1) when t ̸= t0 and δ̌α(t0) − δα(t0) = oP(1). Finally,
by Assumption E.3, we may prove that P(ť = t0) → 1. □

E.3 Verification of Assumption E.3

We next provide a few examples to verify the condition δα(t0) > c5 in Assumption E.3.

Example E.1. Suppose that the group structure is time invariant, i.e., G 1 = G 2 and K1 = K2 = K0, but there
exists a k0 ∈ {1, 2, · · · ,K0} such that αk0•(·) defined in Section 4 is discontinuous at τt0 satisfying

|αk0•(τt0+1) − αk0•(τt0)|2 ⩾ c6 > 0,

where αr
k0•(·) and αl

k0•(·) denote the right and left limits of αk0•(·), respectively. In this case, we may verify
that

α
†
k•(τt) = αk•(τt), α

‡
k•(τt) = αk•(τt).

Hence, it is easy to show that
δα ⩾ |αk0•(τt0+1) − αk0•(τt0)|2 ⩾ c6,

verifying Assumption E.3. Similarly, the condition of δβ(t0) > c2 in Assumption 6(iii) is also satisfied.
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In the following examples, for notational simplicity, we consider a special time-varying network VAR
model with break in either the group membership or number:

xi,t =

{
γg1

i
(τt)

∑
j̸=i w̃ijxj,t−1 + αg1

i
(τt)xi,t−1 + εi,t, 1 ⩽ t ⩽ t0,

γg2
i
(τt)

∑
j̸=i w̃ijxj,t−1 + αg2

i
(τt)xi,t−1 + εi,t, t0 + 1 ⩽ t ⩽ T ,

(E.10)

where γg1
i
(·) and γg2

i
(·) denote the time-varying network effects invariant over nodes which the i-th node

follows. This model is considered in an earlier version of our paper with no break in the group structure.

Example E.2. Suppose that model (E.10) holds, the group number is time invariant, K1 = K2 = 2, but there
is a break in the group membership at the time point t0. Before the break point, g1

i = 1 for 1 ⩽ i ⩽ ⌊N/2⌋
and g1

i = 2 for ⌊N/2⌋ + 1 ⩽ i ⩽ N; after the break point, g2
i = 1 for 1 ⩽ i ⩽ ⌊N/4⌋ and g2

i = 2 for
⌊N/4⌋+ 1 ⩽ i ⩽ N. The group-specific coefficient functions γ1(·), γ2(·), α1(·) and α2(·) are continuous over
[0, 1], and

|γ2(τt0) − γ1(τt0)|+ |α2(τt0) − α1(τt0)| ⩾ c7 > 0. (E.11)

Note that
α1•(τt) = [γ1(τt),α1(τt)]

⊺
, α2•(τt) = [γ2(τt),α2(τt)]

⊺
.

With some elementary calculations, we may show that

α
†
1•(τt) = W†

1

[
γ1(τt)

α1(τt)

]
+ W†

2

[
γ2(τt)

α2(τt)

]
, α

†
2•(τt) = [γ2(τt),α2(τt)]

⊺
,

α
‡
1•(τt) = [γ1(τt),α1(τt)]

⊺
, α

‡
2•(τt) = W‡

1

[
γ1(τt)

α1(τt)

]
+ W‡

2

[
γ2(τt)

α2(τt)

]
,

where W†
1, W†

2, W‡
1 and W‡

2 are all positive definite satisfying W†
1 + W†

2 = I2 and W‡
1 + W‡

2 = I2. Under the
condition (E.11), it is easy to verify Assumption E.3. The verification of δβ(t0) > c2 in Assumption 6(iii) is
similar.

It is worth pointing out that Assumption E.3 may be invalid when the break in the group membership
is sparse. In Example E.2, consider g1

i = 1 for 1 ⩽ i ⩽ ⌊N/2⌋ and g1
i = 2 for ⌊N/2⌋ + 1 ⩽ i ⩽ N before the

break point; g2
i = 1 for 1 ⩽ i ⩽ ⌊N/2⌋− s and g2

i = 2 for ⌊N/2⌋− s+ 1 ⩽ i ⩽ N after the break point, where
s is a small and fixed positive integer. In this case, δα would converge to zero, indicating that Assumption
E.3 is violated.

Example E.3. Suppose that model (E.10) holds. Consider a break in the group number: K1 = 2 and K2 = 1.
Before the break time t0, g1

i = 1 for 1 ⩽ i ⩽ ⌊N/2⌋ and g1
i = 2 for ⌊N/2⌋ + 1 ⩽ i ⩽ N; after the break

point, the two groups merge, i.e., g2
i ≡ 1. Using the arguments in Example E.2, we can similarly verify

Assumption E.3 as well as δβ(t0) > c2 in Assumption 6(iii).
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Table F.8: Estimation performance of the group number M0 and membership G◦

Fixed group Random group
Sparsity Measurement T \N 100 200 100 200
w̄ = 0.025 AC(M0) 300 0.890 0.972 0.916 0.978

600 1.000 0.999 0.974 0.998
Purity(G ◦) 300 0.939 0.761 0.901 0.759

600 0.982 0.874 0.961 0.860

w̄ = 0.075 AC(M0) 300 0.904 0.702 0.856 0.697
600 0.999 0.829 0.988 0.857

Purity(G ◦) 300 0.649 0.471 0.622 0.467
600 0.782 0.547 0.762 0.556

F Extra numerical results

F.1 Results of the clustering algorithm in Appendix A

We next report the finite-sample performance of the clustering algorithm introduced in Appendix A to
determine the homogeneity structure on the time-varying network spillover effects. We start with the data
generating process provided in Section 6.1. Note that M0 = 2 and

G ◦
1 =

{
(i, j) ∈ ¯NN : i ∈ G1, j ∈ G1

}
, G ◦

2 = ¯NN/G ◦
1 .

To evaluate the homogeneity structure estimation accuracy, as in Section 6.1, we compute

AC(M0) =
1
R

R∑
r=1

I(M̂r = M0) and Purity(G ◦) =
1
RN

R∑
r=1

M̂r∑
m=1

max
1⩽j⩽M0

∣∣∣Ĝ ◦
m,r ∩ G ◦

j

∣∣∣ ,
where M̂r and Ĝ ◦

m,r are the estimates of the group number and membership in the r-th replication. The
relevant results are summarized in Table F.8. In general, the performance of the group number and mem-
bership estimates improve as T increases from 300 to 600 whereas the membership estimation is sensitive
to the network sparsity level with Purity(G ) decreasing significantly as w̄ increases from 0.025 to 0.075.

In addition, we report the clustering results when there exists a break in the group membership. The
data generating process is described in Section 6.2. Table F.9 summarizes the estimation performance for
the group number M0 and membership G ◦. The findings drawn from Table F.9 are similar to those from
Table F.8.
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Table F.9: Estimation performance of the group number M0 and membership G◦ (with a break)

Fixed group Random group
Sparsity Measurement T \N 100 200 100 200
w̄ = 0.025 AC(M0) 400 1.000 0.995 1.000 0.996

800 1.000 0.998 1.000 0.999
Purity(G ◦) 400 0.961 0.811 0.930 0.808

800 0.989 0.903 0.975 0.895

w̄ = 0.075 AC(M0) 400 0.989 0.933 0.975 0.938
800 1.000 0.980 0.995 0.979

Purity(G ◦) 400 0.729 0.578 0.712 0.577
800 0.827 0.658 0.812 0.654

F.2 Clustering results for grouped network VAR with constant coefficients

We next report the additional simulation result by treating the data generating process in Section 6.1 as
Zhu, Xu & Fan (2023)’s grouped network VAR with constant coefficients and adopting their clustering
algorithm. The estimation results for the group structure are shown in Table F.10. By comparing the results
with those in Table 1, we note that failure to account for smooth structural changes in network VAR would
substantially affect the estimation accuracy of the latent group structure for network time series, resulting
in lower values of AC(K0) and Purity(G ).

Table F.10: Estimation performance of the group structure using Zhu, Xu & Fan (2023)’s model
and algorithm

Fixed group Random group
Sparsity Measurement T \N 100 200 100 200
w̄ = 0.025 AC(K0) 300 0.844 0.851 0.827 0.830

600 0.670 0.714 0.557 0.743
Purity(G ) 300 0.555 0.577 0.561 0.582

600 0.538 0.681 0.551 0.675
w̄ = 0.075 AC(K0) 300 0.802 0.773 0.796 0.823

600 0.763 0.705 0.719 0.733
Purity(G ) 300 0.616 0.644 0.604 0.663

600 0.711 0.750 0.685 0.757

F.3 Extra empirical result

In addition, we plot the estimated time-varying momentum effects from both models in Figures F.2 and
F.3, respectively. In each figure, the left plot is for Group 1, while the right one is for Group 2. Although
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Figure F.2: Estimated time-varying momentum effects in model (i)

Figure F.3: Estimated time-varying momentum effects in model (ii)

both figures present similar patterns of movement across groups, the Y-axis covers different ranges.
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