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Abstract

Distributed Hash Tables (DHTs) have proven to be a
novel and efficient platform for building a variety of scal-
able and robust distributed applications like content shar-
ing and location in the Internet. Similar to those in the In-
ternet, distributed applications and network services in mo-
bile ad hoc networks (MANETs) can potentially benefit from
the deployment of a DHT. However, bandwidth limitations,
node mobility, and multi access interference pose unique
challenges to deploying such DHTs in MANETs.

In this paper, we first study how to efficiently implement
DHTs in MANETs. We explore two disparate design op-
tions: the simple approach of directly overlaying a DHT
on top of a MANET multi-hop routing protocol, and Ekta
which integrates a DHT with a multi-hop routing proto-
col at the network layer. Second, we examine the efficiency
of DHT substrates in supporting applications in MANETs
by examining the performance of a resource discovery ap-
plication built on top of Ekta with one that directly uses
physical layer broadcast. Such a study answers the funda-
mental question of whether a DHT substrate can be more
efficient in supporting applications than a physical layer
broadcast-based protocol, since in MANETs, DHT proto-
cols effectively rely on physical layer broadcast to discover
and maintain routes.

1. Introduction
A mobile ad hoc network (MANET) consists of a collec-

tion of wireless mobile nodes dynamically forming a tem-
porary network without the use of any existing network
infrastructure or centralized administration. In such a net-
work, nodes operate as both hosts and routers, forwarding
packets for other mobile nodes that may not be within di-
rect transmission range of each other. Such decentralized
networks can enable flexible, infrastructure-less and robust

data and service access to support ubiquitous computing en-
vironments. Due to the infrastructure-less environment, ap-
plications and network services in mobile ad hoc networks
need to be designed to operate in a decentralized manner.

Recently, Distributed Hash Tables (DHTs) such as CAN,
Chord, Pastry and Tapestry [19, 23, 22, 27] have been pro-
posed as a novel platform for building a variety of scal-
able and robust distributed applications for the Internet,
such as distributed storage systems [5, 21], application level
multicast [3], and content-based full-text search [24]. A
DHT substrate shields many difficult issues including fault-
tolerance, locating objects, scalability, availability, load bal-
ancing, and incremental deployment from the distributed
application designers. We argue that the DHT abstraction, if
deployed in MANETs, could similarly provide an efficient
way of constructing distributed applications and services.
For example, applications such as file sharing and resource
discovery can benefit from the distributed insert/lookup
convergence provided by DHTs. However, DHTs have been
designed for the Internet, and bandwidth limitations, node
mobility, and multi access interference pose unique chal-
lenges to deploying DHTs in MANETs.

In this paper, we first study how to efficiently support
a DHT abstraction in highly dynamic mobile ad hoc net-
works. We explore two design options: a layered approach
which directly overlays a DHT on top of an existing multi-
hop routing protocol for MANETs, and an integrated ap-
proach which integrates a DHT with a multi-hop routing
protocol at the network layer and maximally exploits the in-
teractions between the two protocols. In particular, the lay-
ered approach is implemented by laying Pastry [22] on top
of DSR [12], and the integrated approach, implemented in
Ekta, integrates Pastry and DSR at the network layer.

Our experimental results show that the integrated ap-
proach to supporting the DHT abstraction in MANETs used
by Ekta is superior to the layered approach in terms of the
number of data packets successfully delivered and the aver-
age delay in delivering the packets while incurring compa-
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rable routing overhead. This suggests that the efficient way
of implementing a DHT in MANETs is by integrating the
functionalities of the DHT into the routing layer as opposed
to having two independent layers with minimal interactions.

Since Ekta fundamentally relies on flooding of packets
to discover and maintain routes in supporting the DHT ab-
straction, a fundamental question is whether applications
built on top of Ekta will be more efficient than those di-
rectly built on top of physical layer broadcast. To answer
this question, in the second part of this paper, we perform a
case study using resource discovery as a concrete applica-
tion in MANETs. Using ns-2 simulations, we perform a de-
tailed comparison between the performance of resource dis-
covery built on top of Ekta with an approach that directly
uses physical layer broadcast.

Our experimental results show that for the resource dis-
covery application, the DHT-based approach consistently
outperforms the broadcast-based approach for a wide range
of application parameters. Specifically, the broadcast-based
implementation incurs comparable routing overhead to that
using Ekta for high inter-arrival time between resource
queries. As the inter-arrival time decreases, the Ekta-based
implementation incurs up to an order of magnitude lower
overhead compared to the broadcast-based one. Further-
more, these results hold true for a wide range of mobili-
ties. These results suggest that efficient peer-to-peer sub-
strates such as Ekta provide a viable and efficient approach
to building distributed applications in mobile ad hoc net-
works.

In the final part of the paper, we discuss implementation
details of Ekta in the Linux operating system.

2. Ekta: An Efficient DHT Substrate for Mo-
bile Ad Hoc Networks

In this section, we explore two opposite options in the
design space of implementing a DHT in MANETs. In the
first design, a DHT is directly layered on top of a multi-hop
routing protocol, with minimum modifications to the rout-
ing protocol. This approach is thus similar to implement-
ing a DHT in the Internet; it leverages the existing rout-
ing infrastructure for MANETs to the full extent. This ap-
proach, while consistent with the layered principle of the
ISO model of networking, makes it difficult to exploit many
optimization opportunities from the interactions between
the DHT protocol and the underlying multi-hop routing pro-
tocol. For example, when the routing protocol is Dynamic
Source Routing (DSR) [12] which uses caching to reduce
routing overhead, it is difficult for the routing structures of
the DHT and the route cache of DSR to coordinate with
each other to optimally discover and maintain source routes.

Ekta adopts the opposite approach, that is, to fully inte-
grate the functions performed by the DHT protocol operat-

ing in a logical namespace and by the MANET routing pro-
tocol operating in a physical namespace. The key idea of
the integration is to bring the structured p2p routing pro-
tocol of the DHT to the network layer of MANETs via a
one-to-one mapping between the IP addresses of the mobile
nodes and their nodeIds in the namespace. With this inte-
gration, the routing structures of a DHT and of a multi-hop
routing protocol, e.g., the route cache of DSR, are integrated
into one structure which can maximally exploit the interac-
tions between the two protocols to optimize the routing per-
formance.

We note that although an overlay can be constructed in
an ad hoc network, similarly to in the Internet, the purpose
of this paper is not to motivate such an architecture. Since
an ad hoc network is typically formed of nodes that collabo-
rate with each other to enable communication among all the
nodes, we believe it is rarely necessary to construct an over-
lay that consists of a subset of the nodes. In other words,
unlike in the Internet where DHTs run on overlays, we pro-
pose to support DHT by all nodes in an ad hoc network.

2.1. Background

Since our study uses a concrete DHT, Pastry, and a repre-
sentative routing protocol for MANETs, DSR, we first give
a brief overview of DSR and Pastry in the following.

2.1.1. DSR DSR [12] is a representative multi-hop rout-
ing protocol for ad hoc networks. It is based on the concept
of source routing in contrast to hop-by-hop routing. It in-
cludes two mechanisms, route discovery and route mainte-
nance.

Route discovery is the process by which a source node
discovers a route to a destination for which it does not al-
ready have a route in its cache. The process broadcasts a
ROUTE REQUEST packet that is flooded across the network
in a controlled manner. In addition to the address of the orig-
inal initiator of the request and the target of the request, each
ROUTE REQUEST packet contains a route record, which
records the sequence of hops taken by the ROUTE RE-
QUEST packet as it propagates through the network. ROUTE

REQUEST packets use sequence numbers to prevent dupli-
cation. The request is answered by a ROUTE REPLY packet
either from the destination node or an intermediate node that
has a cached route to the destination. To reduce the cost of
the route discovery, each node maintains a cache of source
routes that have been learned or overheard, which it uses ag-
gressively to limit the frequency and propagation of ROUTE

REQUESTS. The route maintenance procedure monitors the
operation of the route and informs the sender of any rout-
ing errors. If a route breaks due to a link failure, the detect-
ing host sends a ROUTE ERROR packet to the source which
upon receiving it, removes all routes in its cache that use the
hop in error.
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Both route discovery and maintenance benefit from opti-
mizations such as overhearing routes and route errors made
possible by the broadcast nature of the medium access en-
vironment.

We consider DSR with two cache designs: DSR-Path [2]
which uses a path cache to store whole source routes, and
DSR-Link [9] which uses a link cache to store individ-
ual links of routes to build a topological graph of the net-
work. The graph potentially increases the effectiveness of
the cache since it enables DSR to construct routes (using
the graph) that were neither overheard nor discovered.

2.1.2. Pastry Pastry [22] is one of the several structured
p2p routing protocols that implement the DHT abstraction.
In a Pastry network, each node has a unique, uniform, ran-
domly assigned nodeId in a circular 128-bit identifier space.
Given a message and an associated 128-bit key, Pastry re-
liably routes the message to the live node whose nodeId is
numerically closest to the key.

In a Pastry network consisting of N nodes, a message
can be routed to any node in less than log

2b N steps on av-
erage (b is a configuration parameter), and each node stores
only O(logN) entries, where each entry maps a nodeId
to the associated node’s IP address. Specifically, a Pastry
node’s routing table is organized into dlog

2b Ne rows with
(2b − 1) entries each. Each of the (2b − 1) entries at row
n of the routing table refers to a node whose nodeId shares
the first n digits with the present node’s nodeId, but whose
(n +1)th digit has one of the (2b − 1) possible values other
than the (n + 1)th digit in the present node’s nodeId. Pas-
try stores multiple candidates per routing table entry to in-
crease availability. In addition to a routing table, each node
maintains a leaf set, consisting of L/2 nodes with numer-
ically closest larger nodeIds, and L/2 nodes with numeri-
cally closest smaller nodeIds, relative to the present node’s
nodeId. L is another configuration parameter. In each rout-
ing step, the current node forwards a message to a node
whose nodeId shares with the message key a prefix that is at
least one digit (or b bits) longer than the prefix that the key
shares with the current nodeId. If no such node is found in
the routing table, the message is forwarded to a node whose
nodeId shares a prefix with the key as long as the current
node, but is numerically closer to the key than the current
nodeId. Such a node must exist in the leaf set unless the
nodeId of the current node or its immediate neighbor is nu-
merically closest to the key.

2.2. Design Options

In this section, we describe two opposite design ap-
proaches to implementing DHTs in MANETs, using a
proximity-aware DHT Pastry and an on-demand MANET
routing protocol DSR as concrete examples. The first ap-
proach directly overlays Pastry on top of DSR, whereas the

second approach integrates the two protocols at the net-
work layer.

2.2.1. Layered Approach In the layered approach, Pas-
try is directly layered on top of MANETs in the same way
it is layered on top of the Internet. Pastry maintains its leaf
set and routing table entries without source routes and DSR
maintains source routes passively as per the demand of Pas-
try routing state.

However, a straightforward layering is not prag-
matic, and three modifications are made to accommodate
the shared medium access nature of MANETs: (1) Pas-
try’s node joining process is modified to use expanding ring
search for locating a bootstrap node to join the network;
(2) The original Pastry uses an expensive “ping” mecha-
nism with a delay metric to measure and maintain the prox-
imity of nodes in its routing tables. We modified Pastry to
use a hop count metric for proximity since in MANETs, de-
lay is affected by many factors and has a high variabil-
ity; (3) To reduce the cost of this proximity probing, we
modified DSR to export an API that allows Pastry to in-
quire about the proximity values for nodes it is interested
in. DSR can then use its cache to reply to “pings” from Pas-
try if there is a cached path to the node being pinged. In the
absence of such a cached path, a ROUTE REQUEST is initi-
ated by DSR.

2.2.2. Ekta: An Integrated Approach Ekta implements
the DHT abstraction by integrating Pastry and DSR at the
network layer which exploits optimizations made possible
from close interactions between the two protocols. Previ-
ously, we proposed the design of DPSR in a position pa-
per [8] as a network layer unicast routing protocol. Ekta
and DPSR share the essence of tightly integrating Pastry
and DSR at the network layer. However, unlike DPSR, Ekta
does not use the DHT for unicast routing.

Node Addressing Ekta assigns unique 128-bit nodeIds to
nodes in a MANET by hashing the IP addresses of the nodes
using a collision-resistant hashing function such as SHA-
1 [6].

Node State The structures of the routing table and the leaf
set stored in each Ekta node are similar to those in Pastry.
The difference lies in the content of each leaf set and rout-
ing table entry. Each entry in Ekta’s leaf set and routing ta-
ble stores a source route to reach the designated nodeId. As
in Pastry, any routing table entry is chosen such that it is
physically closer than the other choices for that routing ta-
ble entry. This proximity awareness is continuously main-
tained by making use of the vast amount of indirectly re-
ceived routes (from overhearing or forwarded messages) or
by using prefix-based route discovery as described below in
routing.

The size of the leafset (L) in Ekta is chosen to be 16.
The parameter b of Pastry is a trade-off between the size
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of the populated portion of the routing table (approximately
dlog

2b Ne*(2b − 1) entries) and the maximum number of
hops required to route between any pair of nodes (i.e.,
dlog

2b Ne). The value of b is chosen as 4.
For efficiency, each routing table entry stores a vector

of source routes to one or more nodes that match the pre-
fix of that entry. Similarly, each leafset entry stores multiple
routes to the designated node. The replacement algorithm
used in each leaf set or routing table entry is Least Recently
Discovered (LRD), disregarding whether a route is discov-
ered directly or indirectly. When looking up a route from a
leaf set or routing table entry, the freshest among the short-
est routes in that 1-D entry is returned.

Routing In Ekta, a message with a 128-bit key is routed us-
ing Pastry’s prefix-based routing procedure and delivered to
the destination node whose nodeId is numerically closest
to the message key. When a route lookup for the next logi-
cal hop returns a next-hop node from the leafset for which
a source route does not exist, Ekta initiates a route discov-
ery to discover a new source route. On the other hand, if
the node selected as the next hop is from the routing ta-
ble and does not have a route, a prefix-based route dis-
covery is performed to discover routes to any nodes whose
nodeIds match the prefix for that routing table entry. Note
that each hop in the Ekta network is a multi-hop source
route, whereas each hop in a corresponding Pastry network
is a multi-hop Internet route.

Node Arrival/Departure Ekta uses a modified form of the
Pastry join protocol to handle node arrivals. Each JOIN

message is routed to the node whose nodeId is closest to
the joining node. In contrast to Pastry, only this node re-
sponds with a JOIN COMPLETE message containing its leaf
set. To maintain leaf set consistency, this node also noti-
fies the members of its leaf set about the arrival of the new
node using a broadcast flooding which records the path tra-
versed as the packet is propagated. The leaf set members
then send back acknowledgments using the recorded path
(source route). Similarly, a node floods a LEAVE message
with the leaf set members acknowledging the event. All the
nodes receiving the LEAVE message remove this node from
their routing tables.

Note that Ekta join and leave procedures are lightweight
and incur message overhead only to maintain leaf set con-
sistency which is required for DHT convergence. Unlike
Pastry, no routing entry exchanges or proximity probing is
carried out. Routing table entries are discovered on demand
using low overhead prefix-based route discoveries and over-
hearing.

Optimizations Ekta inherits all of the optimizations on
route discovery and route maintenance used by the DSR
protocol. In addition, Ekta updates its routing table and leaf
set using routes snooped while forwarding and overhearing

packets, thus constantly discovering fresh and low proxim-
ity routes for the leaf set and the routing table entries. In ad-
dition to the “prefix-based view” of the routing table and
the “neighbor-node view” of the leaf set, the Ekta rout-
ing structures can be viewed as two caches of source routes.
These can be used to support unicast routing by Ekta when-
ever required by the application. For example, an Insert
operation in a DHT-based application may travel over mul-
tiple hops in the nodeId space while an acknowledgment to
the Insert could be efficiently unicast back to the origina-
tor.

2.3. Evaluation Methodology

We use ns-2 [1] to evaluate the performance of both ap-
proaches to implementing DHTs. For the layered approach,
we implemented Pastry as an application in ns-2 and ran it
over DSR with a path cache and DSR with a link cache as
studied in [9]: DSR-PathGen64 and DSR-LinkMaxLife. The
two versions are referred to as Layered-Path and Layered-
Link in the rest of the paper. Like DSR, Ekta was imple-
mented as a routing agent in ns-2.

The mobility scenarios are generated using a modified
“random waypoint” model [26]. In our model, 50 nodes
move at a speed uniformly distributed between 1-19 m/s in
an area of 1500m x 300m. A wireless radio with 2 Mbps
bit rate and 250m transmission range is used. The simula-
tion duration chosen is 900s.

The communication pattern consists of 40 traffic sources,
each initiating packets at the rate of 3 packets/second. Each
packet has a 48-byte message body, prepended with a 128-
bit key generated from hashing the message body. Thus, the
effective packet payload is 64 bytes. This communication
pattern models the traffic in a DHT-based storage system
such as PAST [21].

To evaluate the steady state behavior of the DHTs, we
use a cutoff time of 300s in a 1200s simulation, resulting
in a duration of 900s over which the performance statis-
tics are collected. This cutoff is chosen such that all con-
nections have been initiated, all nodes have joined the net-
work, and the instantaneous average speed of nodes in the
network has stabilized to a steady state value [26].

The following metrics are evaluated for the routing pro-
tocols: (1) Routing overhead – The number of control pack-
ets transmitted, with each hop-wise transmission of a con-
trol packet counted as one transmission; (2) Packet deliv-
ery ratio (PDR) – The ratio of the data packets delivered to
the correct destinations, i.e., nodes whose nodeIds are clos-
est to the keys of the data packets, over the data packets gen-
erated by the traffic sources; (3) Average delay – The aver-
age end-to-end delay in routing a data packet.
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Figure 1. Routing overhead, PDR and delay for varying mobility.

2.4. Performance Results

Figure 1(a) compares the routing overhead of Ekta and
the two layered versions as the network mobility is varied.
The routing overhead of Ekta is much lower than Layered-
Path for all mobilities. The higher overhead in Layered-Path
can be attributed to the following reasons:

(i) Layered-Path employs periodic routing table main-
tenance (every 250 seconds). These additional maintenance
(non-data) packets and the route discoveries caused by them
increase its overhead. In addition, probing the proximities
of the exchanged nodes also adds to the routing overhead.
In contrast, Ekta uses overhearing of routes from physically
nearby nodes to maintain proximity of its routing table en-
tries.

(ii) Layered-Path selects a node as the next overlay hop
irrespective of whether there are routes to that node in the
DSR route cache. This can cause unnecessary route discov-
eries. In Ekta, a node that has a valid source route is given
preference and only when no such node exists, a prefix-
based route discovery is issued.

(iii) Layered-Path selects a node as the next hop regard-
less of the relative freshness of its DSR source route com-
pared to other candidates, since Pastry can not tell. This can
lead to an increase in ROUTE ERRORS. We observed that
for a pause time of 0s, Ekta incurred 9725 ROUTE ER-
RORS while Layered-Path had more than 18,000 ROUTE

ERRORS. Ekta uses the Least Recently Discovered replace-
ment to maintain source routes for each 1-D routing table
entry and leaf set entry. Thus next-hop nodes are selected
such that the routes to them are both fresh and short.

(iv) Although Layered-Path discovers candidates with
better proximities for routing table entries via routing ta-
ble maintenance, this approach does not refresh the proxim-
ities of the existing candidates. While this approach is suit-
able for the Internet where the proximity of nodes changes
slowly, in a highly dynamic ad hoc network, it can lead to
stale proximity information and consequent selection of dis-
tant nodes as next hops. This is exacerbated by the fact that

source routes to these distant nodes may need to be discov-
ered as well. In contrast, the proximities of candidates in
Ekta are continually refreshed from forwarding and over-
hearing of packets.

A consequence of this high routing overhead is that
the PDR of Layered-Path drops with increased mobility as
shown in Figure 1(b). This is because the network capacity
available for data packets is reduced. Additionally, pack-
ets traverse longer routes due to stale proximity selection,
which increases the probability of route errors due to both
the increased number of physical hops and the larger mes-
sage header from longer source routes. In contrast, the PDR
for Ekta remains largely constant with increased mobility.

A further consequence of the high routing overhead in
the layered approach is that the routing delay of Layered-
Path increases with increased mobility as shown in Fig-
ure 1(c). In contrast, the routing delay of Ekta remains al-
most constant.

Layered-Link which builds a topological graph of
the network can construct routes it has neither discov-
ered nor overheard, allowing it to have a lower rate of
ROUTE REQUESTS and consequently lower routing over-
head. However, these routes are constructed to poten-
tially distant nodes and are frequently stale. It was ob-
served in the simulations that although the number
of ROUTE REQUESTS and consequently ROUTE RE-
PLYS in Layered-Link are much lower than in Layered-Path
and slightly lower than in Ekta, the number of ROUTE ER-
RORS in Layered-link are comparable to in Layered-Path
and much higher than in Ekta. As a result, as the mobil-
ity increases, Layered-Link incurs a lower overhead than
Ekta, but its PDR is much lower than that of Ekta.

In summary, Ekta is superior to both Layered-Link and
Layered-Path in the number of data packets successfully de-
livered. Although Layered-Link maintains a lower routing
overhead, the inability to exploit the interactions between
the two protocols contributes to its low packet delivery ra-
tio. This suggests that the correct way of implementing a
DHT in MANETs is by integrating the functionalities of
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the DHT into the routing layer as opposed to having two in-
dependent layers with minimal interactions.

3. Application Case Study: Resource Discov-
ery in MANETs

An efficient DHT substrate in MANETs such as Ekta can
greatly ease the construction of distributed applications and
services in MANETs by shielding many common and diffi-
cult issues such as fault-tolerance, object location, load bal-
ancing, and incremental deployment from the developer. In
this sense, providing a DHT substrate in MANETs is even
more significant than in the Internet, since these issues are
especially challenging in a wireless, mobile environment.
However, due to mobility in MANETs, any DHT substrate
based on on-demand routing may trigger repeated flooding-
based route discoveries to discover and maintain routes. In
other words, a DHT-based application in MANETs may
also experience many floodings of control packets. Thus,
a fundamental question is whether applications built on top
of the DHT such as Ekta will be as efficient as or more effi-
cient than those directly built on top of physical layer broad-
cast. To answer this question, we perform a case study using
resource discovery in ad hoc networks as a concrete appli-
cation.

In the following, we first formally define the resource
discovery problem in mobile ad hoc networks. We then
present the design, analysis, and evaluation of two alterna-
tive approaches to implementing resource discovery: one di-
rectly built on top of physical layer broadcast, and one built
on top of Ekta.

3.1. Resource Discovery in MANETs

Pervasive wireless ad hoc networks are comprised of a
variety of heterogeneous devices with varying energy re-
sources, capabilities, and services to offer. It is natural for
such systems to rely on peer cooperation to efficiently use
each other’s resources. Examples of resource discovery in-
clude discovering nodes with GPS devices so other nodes
can approximate their location, collecting sensed informa-
tion from mobile sensors, contacting location and directory
servers, and locating people with specific capabilities in dis-
aster relief and battlefield networks. For instance, a resource
lookup in a platoon of soldiers or in a team coordinating dis-
aster relief can be of the form “Find the closest medic”.
These examples show that efficient discovery of resources
that meet certain requirements in an ad hoc network is of
great importance to building a variety of distributed appli-
cations in ad hoc networks.

We assume a set R of unique resources are present in
a network with N nodes. Each resource Ri ∈ R is repli-
cated with some probability qi on each node in the network.

We assume that each resource Ri in the ad hoc network
has a well known name (e.g., GPS) or identifier. Resource
ownership information once discovered is not cached since
in a MANET, resources could be dynamic (nodes join and
leave), and their availability is time-varying, i.e., depend-
ing on their current usage.

Discovering a resource includes three steps: retrieving a
list of a set of nodes Ni ⊆ N that own the requested re-
source Ri, selecting a physically close owner of Ri from
this list, and finding a route to that owner. This operation
should be completed with low overhead, high success rate,
and low delay.

3.2. Design Options

For our case study, we implemented the resource dis-
covery application in ns-2 based on two decentralized ap-
proaches, unstructured (Gnutella-like) and structured
(DHT-based). Both versions are modeled after the Ser-
vice Location Protocol framework [7]. The detailed
wireless simulation capabilities of ns-2 allow us to exam-
ine the tradeoffs between the two versions when running on
a MANET.

DSR-RD: Resource Discovery using DSR Route Requests
The first version of the resource discovery application is in-
tegrated with the DSR routing protocol. It essentially uses
physical layer broadcast augmented with source routing to
perform resource discovery as follows. We modified the
route discovery process of DSR to support discovering re-
sources using resource specific identifiers. Each node trans-
mits RESOURCE REQUESTS (similar to ROUTE REQUESTS

of DSR) and each node that does not own the resource re-
quested, rebroadcasts the RESOURCE REQUESTS after en-
coding its IP address into the source route. If a node in
the network owns that resource, it responds with a service
reply (RESOURCE REPLY) that is unicast back to the re-
quester similar to the ROUTE REPLY of DSR. RESOURCE

REQUESTS contain sequence numbers to ensure that the
overhead incurred is at most N (network size) packets. The
remaining overhead is the number of RESOURCE REPLY

transmissions which is determined by the degree of replica-
tion of the resource being requested.

Ekta-RD: Resource discovery using Ekta The second ver-
sion builds the resource discovery application on top
of the Ekta DHT substrate. In the following this ver-
sion is referred to as Ekta-RD. Ekta provides three
DHT APIs, route(Message, Key), route(Message, IP Ad-
dress) and broadcast(Message, Broadcast Address), as
well as an additional API Proximity(IP Address) which
are used by the application in various stages of its opera-
tions. The Proximity(IP Address) interface returns the the
hop distance of the node specified by looking up the lo-
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cally cached routes. If no such route is cached, Ekta returns
null.

Ekta-RD simply relies on Ekta to route a RESOURCE

REQUEST to the correct directory agent and receive a reply.
When a resource is required, Ekta-RD hashes the resource
identifier into a key and invokes route(Message, key) of Ekta
to send this request to a node Ni ∈ N whose nodeID (hash
of network address) is numerically closest to this key. This
node Ni is the directory agent for the mapped resource and
contains previously inserted information for this resource. It
replies to the requester with a list of nodes that own the re-
source in the network. The requester then finds the closest
node out of this list using Ekta ’s Proximity(IP Address) in-
terface and contacts the chosen node to use the resource.
If Ekta cannot determine the proximity of any node in the
list returned in the RESOURCE REPLY, the application ran-
domly selects a node out of the list and contacts that node to
use the resource. This will trigger a ROUTE REQUEST for
that random node by Ekta.

3.3. Analysis

In this section, we analyze the overhead incurred by
DSR-RD and Ekta-RD. We define the following parameters.
P is the average number of hops between any two nodes.
λ is the average number of resource requests per node.
Note that λ = Simulation time

Average interarrival time
. N is the number

of nodes in the network. The average degree of replication
of any resource is q. In DSR-RD, a single resource request
triggers N packet transmissions. A total of q · N resource
replies are received per request, each causing an overhead of
P transmissions. Thus the total overhead incurred by each
node is given by λ · N + λ · q · N · P and the correspond-
ing total overhead is

XDSR−RD = λ · N
2 + λ · q · N

2
· P (1)

In Ekta-RD, each resource request is routed in log
2b N

overlay hops and a reply is unicast back in P transmis-
sions. The overhead per node assuming all routes used were
cached and valid is λ · log

2b N · P + λ · P . However, in
MANETs routes break, and new routes need to be discov-
ered using flooding. In the worst case, when all routes in
a transmission sequence are invalid, log

2b N + 1 floodings
will be initiated. If Pv is the average probability that a route
is cached and valid and Pb is the average probability that a
route is not cached or cached but stale, then the total over-
head in Ekta is given by

XEkta−RD = N · Pv(λ · log
2b N · P + λ · P ) +

N · Pb(λ · log
2b N · P + λ · P +

λ · (log
2b N + 1) · N) (2)

From the above equations, we can infer that overhead in
DSR-RD is independent of the mobility whereas Ekta-RD
will have increasing overhead as mobility is increased. With

increasing N , the overhead grows as O(N 2) for DSR-RD
and as O(N ·log

2b N) for Ekta-RD (since Pb < Pv for most
practical scenarios). Another observation is that as the inter-
arrival time increases, λ decreases and thus the overhead for
both approaches decreases.

3.4. Evaluation Methodology

The simulation parameters used in this evaluation are
similar to the parameters outlined in Section 2.3. As before,
mobility scenarios are generated using the modified “ran-
dom waypoint” model [26]. The nodes move at a speed uni-
formly distributed between 1-9 m/s. The number of unique
resources in the network, i.e., the size of the set R, is cho-
sen to be equal to the number of nodes in the network. Each
resource Ri is owned by on average 10% of the nodes in the
network.

The communication pattern of the resource discovery ap-
plication consists of resource requests that are modeled us-
ing a Poisson arrival process. The average inter-arrival time
(∆T ) of these requests is varied from 1 to 15 seconds. Each
resource request aims at locating a resource Ri randomly
selected from the set R. Hashing the identifier of resource
Ri generates a unique 128-bit key. This key is used by Ekta
to route the resource request message. We use areas of sizes
1500m x 300m, 2000m x 500m, 3000m x 600m for net-
works of size 50, 100, and 150, respectively.

The following metrics are measured to compare the two
implementations: (1) Overhead – The total number of pack-
ets including the control packets transmitted for the re-
source discovery operation, with each hop-wise transmis-
sion of a packet counted as one transmission; (2) Success ra-
tio – The ratio of the number of resource requests resolved
over the number of resource requests generated by the ap-
plication. We do not measure the resolution latency, since
there is no easy way to compare the two implementations in
a fair manner. The delay for the first reply to be received in
DSR-RD is expected to be much shorter than receiving the
single reply in Ekta-RD containing the whole list of own-
ers. On the other hand, the average delay in receiving all the
replies for a request in DSR-RD is expected to be compara-
ble to that in Ekta-RD.

3.5. Performance Results

In the following, we compare the performance of the two
implementations of the resource discovery application with
varying request rate, mobility, and network size.

3.5.1. Effects of Request Rates and Mobility In this ex-
periment, the average inter-arrival time of the requests gen-
erated by each node is varied from 1 second to 5, 10, and 15
seconds. As the inter-arrival time ∆T increases, the num-
ber of resource queries generated per node λ (and thereby
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Figure 2. Overhead and success ratio comparison as the inter-arrival time increases.

in the overall system) decreases. Thus the larger the value
of ∆T , the lesser the congestion in the network. The results
of this experiment are shown in Figure 2. The following ob-
servations can be made from Figure 2.

First, the overhead for DSR-RD is inversely propor-
tional to the inter-arrival time as seen in Figures 2(a), 2(b),
and 2(c) for all the pause times. This is because the over-
head of DSR-RD is proportional to λ and λ is inversely pro-
portional to the inter-arrival time as seen in Section 3.3.

Second, Figures 2(a), 2(b), and 2(c) show that the over-
head for Ekta-RD also decreases as the the inter-arrival time
increases for all pause times. In addition to the overhead re-
duction due to decreasing λ, further reduction is caused by
reduced congestion in the network resulting in lower proba-
bility of routes being mistakenly invalidated (which can in-
crease Pb in Equation (2)).

Third, the ratio between the overhead of DSR-RD and
Ekta-RD remains largely constant as the inter-arrival time
increases for each fixed mobility. However, as the mobil-
ity increases, the gap between the overhead of the two ver-
sions narrows. This is because the overhead of DSR-RD is
largely independent of the mobility, while Ekta-RD is more
likely to experience broken routes from increased mobility
(which increases Pb).

Finally, the success ratios for both implementations ap-
proach 100% except for the case of inter-arrival time be-
ing 1 second as observed in Figures 2(d), 2(e), and 2(f).
The drop in success ratio for DSR-RD can be explained as

follows. When the inter-arrival time is 1 second, the rout-
ing overhead for DSR-RD is so large that the increased con-
gestion and multi-access interference in the network cause
packets to be dropped, reducing the success ratio.

3.5.2. Effects of Network Size In this experiment we vary
the network size among 50, 100, and 150 nodes while keep-
ing the average inter-arrival rate constant at 5 seconds. We
perform the experiments for a static network (pause time
1200s) and a highly mobile network (pause time 0s).

Figures 3(a) and 3(b) depict the overhead and success
ratio as the network size is varied. First, for a static net-
work, the overhead of Ekta-RD scales slowly with increas-
ing network size (O(N · log

2b N)) as compared to DSR-RD
(O(N2)) and as a result the relative performance gap in-
creases with increased network size. At 150 nodes, the over-
head of DSR-RD grows so large that its success ratio drops
to 90% and thus 10% of resource requests do not succeed.
In contrast, Ekta-RD maintains close to 100% success ra-
tio throughout all network sizes.

Second, when the network is changed from static to
highly mobile, Figures 3(a) and 3(b) show that the overhead
and success ratio for DSR-RD remains largely unchanged
for all network sizes. This is again because of the broadcast
nature of the implementation. In contrast, Ekta-RD suffers
significantly increased overhead and reduced success ratio
when the network size increases. At 150 nodes, the success
ratio of Ekta-RD drops by 4%. This occurs because the in-
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Figure 3. Overhead and success ratio comparison as the network size increases.

creased network size coupled with high mobility causes an
increased number of broken routes and consequently lower
success ratio. Despite the drop in success ratio, Ekta-RD
continues to outperform DSR-RD as the network is scaled
from 50 nodes to 150 nodes.

4. Implementation Details

In this section, we discuss the implementation details
of Ekta on our ad hoc testbed, which comprises of 5 lap-
tops and 15 PDAs running Linux with Orinoco wireless
cards which support 802.11 ad hoc mode. Ekta is imple-
mented as a user-space library (libEkta) that implements the
route(msg,key) DHT API. It operates on a well known ap-
plication specified port and implements a routing table, a
leaf set, and functionalities to perform prefix/route requests
and replies as described in Section 2.2.2, as well as request
timers and outstanding packet buffers. Target applications
can link to this library to use the DHT API.

Figure 4 depicts the steps taken in routing a message
in Ekta. (1) On receipt of a message to route, the applica-
tion hashes the message and calls the route(msg,key) API of
libEkta. (2) Ekta then performs a lookup for the next log-
ical hop of the packet based on the message key and uses
this as the IP destination. The packet is then sent out so
that transport layer and IP headers can be added. (3) Af-
ter the IP header is added, the locally generated packet is
captured by the LOCAL OUT hook of the Netfilter frame-
work. This is done with the help of the Source Routing ker-
nel module (SRM) depicted in the Figure. All packets are
queued up for user-space processing by Ekta. We note that
many ad hoc protocol implementations also incur this over-
head of crossing the user-kernel boundaries twice [16, 4].
(4) Ekta searches for a route to the IP destination (next log-
ical hop) of each packet received from the SRM module. If
such a route does not exist, the packet is buffered and a pre-
fix/route discovery is sent. (5) If a route exists, Ekta inserts
the Ekta header (shown in Figure 5) and copies the source

route to the Ekta option header, both in between the IP and
transport layer headers. It then sends the packet to the next
physical hop from the source route using a raw socket.

The Ekta packet structure is similar to that of DSR [11]
and consists of a fixed 4-octet Ekta header followed by a se-
quence of 0 or more Ekta options. The Ekta header has a
next protocol field and a length field (total length of the op-
tion headers). First, the (next transport) protocol field from
the IP header is copied into Ekta header’s next protocol
field. Then a code unique to Ekta is copied into the IP pro-
tocol field. The IP length is then updated, and the check-
sum recalculated. Each Ekta control packet has its own op-
tion code and related option header.

The message now travels to the next physical hop on the
source route towards the next logical hop. Similar to in the
Internet, we want the packet to be forwarded to the next
logical hop without involving the DHT protocol. (6) The
SRM kernel module in the next physical hop captures the
packet using the Netfilter PRE ROUTING hook. (7) It then
extracts the next hop from the source route in the packet and
forwards the packet on to the next physical hop. (8) Addi-
tionally, it extracts the header information and queues it up
for post processing by Ekta to snoop on routes and update
its routing table. This provides the separation of complex
Ekta operations from packet forwarding along the physi-
cal hops and allows physical packet forwarding to be per-
formed quickly.

The packet is forwarded until it reaches the next logical
hop, detected when the SRM module finds that the source
route destination is the current node. (9) The SRM mod-
ule then strips and buffers the Ekta header for source route
snooping (10), updates the IP protocol field, and allows the
packet to undergo normal stack traversal. (11) The packet
is demultiplexed based on the port number and protocol to
Ekta. (12) If Ekta finds that the key of the message is clos-
est to the hash of current node’s IP address it sends the mes-
sage to the application. Otherwise it restarts the procedure
of sending the message to a logical hop (Step (2)).
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Parts of our design are inspired by other work on ad hoc
protocol implementation (e.g. [13, 16]). Our future work in-
volves the following additions and improvements: (1) sup-
port to remove the double copying between user and ker-
nel space; (2) support for multiple applications linked to
libEkta running on each node and the associated demulti-
plexing; and (3) support for integrating unicast functional-
ity into the Ekta module since the prefix based table can
be used as a cache of routes. In the current design, an ad
hoc unicast routing protocol runs independently from Ekta.
This does not allow sharing of routing information among
the protocols even though both could benefit from it.

5. Related Work

DHTs in MANETs Although there has been no previous
work on supporting DHTs in MANETs without location
information, several studies have proposed implementing
DHTs with GPS support.

The geographic location system (GLS) in GRID [15] is
a scalable location service that performs the mapping of a
node identifier to its location. GLS can be combined with
geographic forwarding to implement unicast. The imple-
mentation of GLS effectively provides a DHT interface; it

routes a message with a nodeId Y to a node whose nodeId
is closest to Y. However, GLS requires both GPS support as
well as building a distributed location database. In [20], the
authors proposed a geographic hash table that is inspired by
DHTs but for data centric storage in sensornets. Like GLS,
GHT requires GPS support, but unlike GLS, a GHT func-
tions without a location database.

Resource (Service) Discovery in MANETs A large body
of work exist on resource discovery for MANETs (e.g.,
[25, 14, 10]). Different from these work, the focus of Ekta-
RD presented in this paper is to demonstrate DHTs as a gen-
eral purpose substrate for building distributed applications
in MANETs.

6. Conclusions and Future Work

Previous work in deploying p2p applications in
MANETs have focused on modifying specific applica-
tions to take advantage of the rich connectivity of the
broadcast medium. In contrast, our approach is to pro-
vide an efficient p2p substrate in MANETs over which di-
verse applications could be easily built and Internet-based
p2p applications ported. In particular, we have stud-
ied the fundamental questions of how to efficiently imple-
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ment DHTs in MANETs and whether applications built on
top of such an DHT can be more efficient than those di-
rectly built on top of physical layer broadcast.

It remains interesting to see how to integrate prefix-based
Pastry routing with other MANET routing protocols. The
use of hop-by-hop routing as in AODV [18] would require
that all nodes along a route to the next overlay hop main-
tain this route. This implies that these intermediate nodes
need to have a prefix match with the destination nodeId.
With source routing, however, the intermediate physical
hops need not share any prefix with the destination nodeId.

It is also interesting to see how to efficiently integrate
other DHTs such as CAN and Chord with MANET rout-
ing protocols. A Chord-based DHT would be similar to
Ekta in that each node would store with its successor list
and finger table a list of source routes to the correspond-
ing nodeIds. However, since the routing table entries for
Chord are required to refer to specific points in the Id space,
proximity-aware selection of overlay hops would be less
flexible than Pastry. A similar problem would exist in a
CAN-based DHT.
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