
CCCG 2007, Ottawa, Canada, August 20–22, 2007

Covering Points by Isothetic Unit Squares

Priya Ranjan Sinha Mahapatra ∗ Partha P. Goswami ∗ Sandip Das †

Abstract

Given a set P of n points in R2, we consider two related
problems. Firstly, we study the problem of computing
two isothetic unit squares which may be either disjoint
or intersecting (having empty common zone) such that
they together cover maximum number of points. The
time and space complexities of the proposed algorithm
for this problem are both O(n2). We also study the
problem of computing k disjoint isothetic unit squares,
admitting sliceable k-partitions, which maximizes the
sum of the points covered by them. Our proposed
algorithm for this problem runs in time O(k2n5) and
uses O(kn4) space. To solve this problem, we propose
an optimal O(n log n) time and O(n) space algorithm
which computes O(n) isothetic unit squares each cov-
ering maximum number of points and having one side
aligned with a point from P .

1 Introduction

Let P = {p1, p2, . . . , pn} be the set of n given points in
R2. Diaz Banez et. al. [1] recently studied the problem
of computing two disjoint isothetic unit squares such
that the sum of the number of points covered by them
is maximum and proposed an O(n2) time algorithm to
solve it. It is also mentioned in the same paper that
the problem finds applications in facility location, Pat-
tern Recognition, Classification, etc. In this paper we
consider two variations of the problem. So far as we are
aware, none of these problems have been studied before.
In one variation, we consider the problem of computing
a pair of isothetic unit squares together maximizing the
number of points covered. The pair of squares may be
disjoint or intersecting, in case of later their overlapping
zone is empty. The motivation for studying this prob-
lem is that there may be a better solution if, in addition
of being disjoint, we allow the squares to be intersect-
ing also. We present an algorithm for this generalization
that runs using O(n2) time and space.

In the other variation we want to compute k disjoint
isothetic unit squares for a given integer k (k ≤ n) such
that they together cover maximum number of points.
For solving this problem, we solve another subproblem.
Given a point set P , for each point p ∈ P , compute

∗Department of Computer Science and Engineering, University
of Kalyani, Kalyani, India

†Indian Statistical Institute, Kolkata, India

an isothetic unit square covering maximum number of
points and having one side aligned with p. It is men-
tioned in [1] that, by reduction to uniform gap prob-
lem [2], the lower bound for the time complexity of this
subproblem can be proved to be Ω(n log n). In this pa-
per, we present an optimal algorithm for the subproblem
which runs in O(n log n) time using O(n) space.

Our algorithm for computing k disjoint isothetic unit
squares is based on dynamic programming paradigm
and uses the above subproblem as a subroutine. The
time and space complexities of the algorithm are
O(k2n5) and O(kn4) respectively.

Without loss of generality we assume that no two
points have the same x- or y-coordinates. We pre-sort
the points (in non-decreasing order) on their x- and y-
coordinates and store them in lists Lx and Ly respec-
tively. The coordinates of a generic point p are denoted
by (px, py) and those for a specific point pi are denoted
by (pxi , pyi). In the rest of the paper, a square means
an isothetic unit square.

2 Candidate Isothetic Unit Square

2.1 Characterization

Let S be a square covering maximum number of points
from P . Let P ′ ⊆ P be the set of points covered by
S. Observe that S can always be repositioned, without
altering the points covered by it, so that two adjacent
sides of S are aligned with two points from P and these
points may not belong to P ′. See Figure 1 for a demon-
stration. Sometimes the adjacent sides may be aligned
to same point, and in that case, the point is at one
corner of S. For each point pi ∈ P , we compute the
square Si having one side aligned with pi and contain-
ing maximum number of points. We call each of these
squares a Candidate Isothetic Unit Square (CIUS). Ob-
serve that one point pi ∈ P can give rise to a linear
number of squares that all have the same number of
points. For our case, any one can be taken as a CIUS.
The total number of possible CIUS’s is thus at most 4n.
For computing the CIUS’s, our algorithm performs four
similar passes. Below we describe only the pass in which
CIUS’s, each having bottom side aligned with a point,
are computed.



19th Canadian Conference on Computational Geometry, 2007

S

Figure 1: Candidate isothetic unit square

2.2 Algorithm for computing CIUS’s

Let the function left(pi) output the minimum entry in
Lx, say pj , such that pxi − pxj is less than or equal to
unity. In a similar way, we define right(.), bottom(.),
and top(.).

We construct a balanced binary search tree T with
search key as the x-coordinate values of the points in
P . We attach positive integral variables M and C with
each node v of T .

The algorithm processes all points p1, p2, . . . , pn from
bottom to top one at a time. For this, we use two sweep
lines named bottom sweep line BS and top sweep line
TS.

To start with, the variables M and C corresponding
to all nodes are initialized with zero and both the sweep
lines are aligned with the bottom most point.

The sweep line TS is moved up one point at a time.
For each point p encountered by the sweep line, if the
distance of p from the current position of the sweep line
BS is less than or equal to unity then p is inserted into
T in the following manner.

For interval [left(p)x, px], locate the split node v in T .
During the search for the leaf node containing left(p)x

along the left subtree of v, if the search path goes left
at a node γ, then increment C of the right child of γ.
In case the right child is a leaf node, increment its M
instead of C. Similar action is performed while searching
for the leaf node containing px on the right subtree of
the split node v. Finally, the M values of the two leaf
nodes containing left(p)x and px are increased by one.
Then update the M values associated with the internal
nodes by the sum of its C and the maximum value of
M of its children along the paths from left(p)x and px

towards the split node v and then towards root.
When the distance of the current point p from BS

becomes greater than unity, the sweep line TS stops
advancing. The sweep line BS is then moved up one
point at a time and for each point q encountered by
BS, if the distance of TS from q is greater than or
equal to unity then report a CIUS and delete the point
q as follows.

Let Sq be the CIUS with bottom boundary aligned
with the point q. Observe that the number of points
covered by Sq is equal to the M value at the root of

the tree T . To locate the left boundary of Sq, start
from the root of the tree T . Compare the M values of
the two children of the root and go to that node having
larger M values. Continue the process till a leaf node
α is reached. Then the left boundary of Sq is aligned
with the point stored in α and report Sq along with the
number of points inside it.

The deletion operation is same as insertion operation
with the following exception. During searching for the
nodes containing left(q)x and qx, instead of increment-
ing, we decrement C’s and M’s by one as necessary.
The subsequent updation is exactly same as that in the
insertion operation.

When the distance of q from TS becomes smaller than
unity and TS is not at the top most point then the sweep
line BS stops advancing. Above process is continued till
all the points are inserted and deleted from the tree T .

For a point p, each of insertion, deletion and reporting
operation takes O(log n) time. Since for each point in P ,
these operations are executed only once, they together
takes O(n log n) time. It is also clear that total space
requirement is O(n).

Theorem 1 Let P = {p1, p2, . . . , pn} be a set of n
points on a plane. Then all CIUS’s, as defined above,
can be computed in O(n log n) time using O(n) space.

3 Optimum k-disjoint squares

In this section we study the problem of computing k
disjoint squares, admitting sliceable k-partitions, such
that they together cover maximum number of points.
Our algorithm for this problem is based on dynamic
programming paradigm and it partitions the point set
recursively.

Given any non-empty subset Q ⊆ P , the optimum
square covering maximum number of points from Q can
be computed in time O(n log n) in the worst case. Now,
using this result and the dynamic algorithm for parti-
tioning a point set by Mukherjee et. al. [3], we can have
the following result.

Theorem 2 Given a set P of n points in R2, k disjoint
isothetic unit squares, admitting sliceable k-partitions,
together covering maximum number of points can be
found using O(k2n5) time and O(kn4) space.

4 Optimum pair of squares

In this section we consider the generalized problem of
computing a pair of squares S1 and S2 such that the
sum of the number of points covered by them is maxi-
mum and S1 ∩ S2 does not contain any point from P .

If we allow the pair of squares to be intersecting with
empty overlapping zone, then the squares of the opti-
mum pair may not be members of the set of optimum
CIUS’s as computed in Section 2.2.



CCCG 2007, Ottawa, Canada, August 20–22, 2007

Figure 2: Optimum intersecting pair

Figure 2 demonstrate this. Here none of the squares
of the pair is an optimum CIUS though they together
constitute an optimum pair.

Lemma 3 Let S be the square containing maximum
number of points. Then the overlapping zone of an op-
timum intersecting pair of squares lies inside S.

However, unfortunately, we can not exploit this
Lemma for developing efficient algorithm for finding the
optimum intersecting squares having empty intersection
zone. In the following, we present a general algorithm
which report the optimum pair S1 and S2 where S1∩S2
does not contain any point from P .

We use the implicit grid obtained by drawing verti-
cal and horizontal lines through each point of the given
set P (see Figure 3). Observe that the resulting n2

grid points can be traversed by using the previously de-
fined sorted lists Lx and Ly in appropriate manner. We
denote, by (i, j), the grid point generated by the inter-
section of the vertical line through the point which is
the i-th entry in Lx and the horizontal line through the
point which is the j-th entry in Ly. If, for some grid
point (i, j), the corresponding x- and y-coordinates are
of the same point, then the grid point is occupied by
a point from P . For brevity, we sometimes specify a
grid point by its coordinates also. Before describing the
algorithm in detail, we first give a brief overview.

4.1 Theme of the algorithm

Let Si,j be a square having bottom right corner at the
grid point (i, j). From the points contained by Si,j , we
discard those points ps for which there exists a point pt

such that

pxs < pxt and pys > pyt (1)

Effectively, we thus get a stair case (AB in Figure 3)
which is a rectilinear xy- monotone chain defined by
the points after removal. Observe that the portion
of Si,j lying between its bottom right corner and the
stair case does not contain any point from P . Let
pq1 , pq2 , . . . , pqr−1 , pqr , . . . , pqm be the points which form
the stair case as we traverse it from left to right. We
form a set Vq1,qm

of grid points as follows. For each

pq1

pq2

pqr−1

pqr

pqm

i,jS

(i,j)
A

B

α

β

Figure 3: Stair case within unit square Si,j

consecutive pair of points pqr−1and pqr , the grid point
having coordinates (pxqr−1

, pyqr
) is a member of Vq1,qm .

We consider, for each member v ∈ Vq1,qm , the square Sv

containing maximum number of points from the subset
of points inside the rectangle defined by the grid points
v and (pxmax , pymin) where pxmax is the maximum of
the x-coordinates occurred in P and pymin

is the mini-
mum y-coordinate. Let Cv be the corresponding count
of the number of points contained by Sv. Compute
CVq1,qm

= maxv(Cv) and let the corresponding square
be SVq1,qm

.
In addition, we consider two more grid points α and

β, where α is on the bottom part of the stair case and β
is on its top part. The grid point α may coincide with
the boundary or closest to it among all those grid points
lying on the bottom segment ([A, pq1 ] in Figure 3) of the
stair case. The grid point β can be identified in a similar
manner. Observe that any one or both of these two
additional grid points may coincide with a point from
P . Let Sα (respectively Sβ) be the square containing
maximum number of points from the subset of points
inside the rectangle defined by the grid points α (β)
and (pxmax , pymin); Cα (Cβ) be the corresponding count.
Let CV = max(CVq1,qm

, Cα, Cβ) and the corresponding
square be SV .

Observe that the pair Si,j and SV may be either dis-
joint or intersecting with empty overlapping zone. So
Si,j , SV forms a candidate pair. Each grid point (i, j)
gives one such candidate pair and our algorithm finds all
such candidate pairs and computes the optimum among
them.

In the above, we have identified candidate pairs by
constructing the stair case relative to the bottom right
corner position of Si,j . Similar candidate pairs may also
be obtained by considering stair cases relative to other
corner positions of Si,j . However, since they are similar
we describe only the bottom right corner case.

In order to reduce the over all complexity, instead
of processing each Si,j separately we process the entire
point set in the following three phases.



19th Canadian Conference on Computational Geometry, 2007

4.2 Phase I

Here we consider Si,j to be the square whose top left cor-
ner is at the grid point (i, j) and let Ci,j be the number
of points from P inside Si,j . Let R1

i,j denote the rect-
angle defined by grid points (i, j) and (pxmax

, pymin
).

We denote the square containing maximum number of
points within R1

i,j by Sopt
i,j and the number of points

within it by Copt
i,j .

In this phase we compute Ci,j , Sopt
i,j and Copt

i,j for each
grid point (i, j). Here we need to consider only those
grid points (i, j) such that Si,j lies properly within the
rectangle defined by (pxmin

, pymin
) and (pxmax

, pymax
).

Lemma 4 Ci,j, Sopt
i,j and Copt

i,j can be computed for all
grid points (i, j) in O(n2) time.

Proof: For a particular j, we can compute Si,j

and the corresponding Ci,j for all i by using two
vertical unit sticks and traversing the horizontal grid
line corresponding to this j from right to left. This
takes linear time. To compute Copt

i,j , we note that
Copt

i,j = max(Ci,j , C
opt
i,j−1, C

opt
i+1,j) and Sopt

i,j is the square
for which maximum occurs. The Lemma follows since
we have to consider all j. ¤

4.3 Phase II

From the notion of stair case defined above we observe
the following.

Observation 1 For any two points pi and pj in some
square, if pxi < pxj and pyi < pyj , the stair case defined
by these two points is unique.

Hence, from the above observation, we can conclude
that, the number of stair cases is at most O(n2).

Observation 2 Let Si,j be a square and its correspond-
ing stair case be AB. Then the stair case CD for the
square Si−1,j can be obtained from AB by adding at
most one point to the left of AB and deleting zero or
more points from its right.

Observation 3 Let the points pq1 , pq2 , . . . , pqm−1 , pqm

form a stair case. Then the optimum count CVq1,qm
is

equal to max(CVq1,qr
, CVqr,qm

) for 1 < r < m and the
corresponding square is SVq1,qm

.

Consider the stair cases defined by pairs of points
(pi, pj) for all possible i and j. Let Mij of the matrix M
store the optimum square SVi,j and the corresponding
count CVi,j for the stair case defined by the pair (pi, pj).
Note that no stair case is defined for an entry Mij for
which pxi < pxj and pyi > pyj .

Lemma 5 The matrix M can be computed in O(n2)
time.

4.4 Phase III

In this phase, we compute the candidate pair of squares
and the optimum pair using the results of Phase-I and
Phase-II.

We use two vertical unit sticks L and R whose bot-
tom points are initialized at the right most grid point
of a horizontal grid line corresponding to j. Let this
grid point be (n, j). Let the n-th entry in Lx be the
point pk (∈ P ). The stick L is moved towards left,
one grid point at a time, till it reaches the grid point
(left(pk)x, pyj

). The first point found is taken as the
right most point of the stair case. Subsequent points
are collected satisfying Equation 1. The points thus
collected forms the stair case within the square defined
by the current positions of the unit sticks L and R.
We insert them in a list in the order as they are found.
Let the list of points be Vq1,qm = {pq1 , pq2 , . . . , pqm}.
From Phase-II, CVq1,qm

= Mq1,qm and the correspond-
ing square is SVq1,qm

. Additionally compute two grid
points α and β, where α is on the bottom part of the
stair case and β is on its top part as explained previ-
ously. If they are present, we lookup the correspond-
ing Sα, Sβ and Cα, Cβ from the result of Phase-I. Let
CV = max(CVq1,qm

, Cα, Cβ) and SV be the correspond-
ing square. The optimal square SV together with the
square defined by the sticks L and R is a candidate pair
containing total number of points, say C, from P .

Now move the square implicitly towards left by one
grid point and update the stair case within it by moving
L and R towards left. Then find the candidate pair in
the similar way as above and update C and the corre-
sponding pair when current C is less than the value of
C in the previous step. This is done for all grid points
on the grid line corresponding to j. Finally, we repeat
this process for all grid lines. We thus have the result.

Theorem 6 Given a set P of n points in R2, two dis-
joint or intersecting (with empty overlapping zone) iso-
thetic unit squares covering maximum number of points
can be found using O(n2) time and space.

References

[1] J. M. Diaz-Banez, C. Seara, J. A. Sellares, J. Urrutia,
and I. Ventura, Covering Points Sets with Two Convex
Objects, Proceedings of the twenty first EWCG, 2005.

[2] D. T. Lee and Y. F. Wu, Geometric complexity of some
location problems, Algorithmica, 1, 193-211, 1986.

[3] M. Mukherjee and K. Chakraborty, A polynomial-
time optimization algorithm for a rectlinear partition-
ing problem with applications in VLSI design automa-
tion, Information Processing Letters, 83, 41-48, 2002.

[4] M. de Berg, M. Van Kreveld, M. Overmars, and O.
Schwarzkopf, Computational Geometry, Algorithms
and Applications, Springer, 1997.


