
CCCG 2007, Ottawa, Ontario, August 20–22, 2007

The Ordinary Line Problem Revisited

Asish Mukhopadhyay ∗† Eugene Greene ∗‡

Abstract

Let P be a set of n points in the plane. A connecting
line of P is a line that passes through at least two of
its points. A connecting line is called ordinary if it is
incident on exactly two points of P. If the points of P
are not collinear then such a line exists. In fact, there
are Ω(n) such lines [8]. In this note, we present a very
simple algorithm for finding an ordinary line, assuming
that the points of P are not collinear.

1 Introduction

Let P be a set of n points in the plane. A connecting
line of P is a line that passes through at least two of its
points. Let S be the set of all connecting lines. A line
l ∈ S is said to be an ordinary line if it passes through
exactly two points of P.

The problem of establishing the existence of such a
line originated with Sylvester [12], who proposed the
following problem in 1893:

If n points in the plane are such that a
line passing through any two of them passes
through a third point, then are the points
collinear?

No solution came forth during the next forty years.
In 1943, a positive version of the same problem was
proposed by Erdos [5], and was solved by Gallai in the
following year [6].

Subsequently other proofs also appeared, notable
among which were the proofs by Steinberg [11] and
Kelly [2]. These results show that the answer is in the
affirmative for plane projective geometry. Therefore if
the points of P are not collinear then there is at least
one ordinary line. In fact, Kelly and Moser [8] showed
that there are at least 3n/7 ordinary lines.

In [10] two different algorithms are reported for
computing an ordinary line. One is based on para-
metric search, while the other uses dualization. Here

∗School of Computer Science, University of Windsor, Windsor,

Canada
†asishm@cs.uwindsor.ca, Partially supported by an NSERC

operating grant
‡greene6@uwindsor.ca, Supported by an NSERC USRA

we present a very simple algorithm that works in the
primal plane.

The paper is organized as follows: In section 2, we
discuss the existence of an ordinary line. In the follow-
ing section we present our algorithm.

2 Existence of an ordinary line

We will henceforth assume that the given set of points
is non-collinear. One (constructive) proof of existence,
due to Kelly, can be found in [4]. The algorithm that
it implies is in O(n3). Other existence proofs can be
found in [9], [7]. The proof that we discuss below leads
to an efficient algorithm. It is described in [3] in the
setting of ordered geometry, in a strictly axiomatic way
[1]. Our treatment on the other hand is more intuitive.

Let [ABC] denote a configuration of three distinct,
collinear points A,B,C with B lying between A and C.
Let l0 be a line incident with exactly one point of P,
say P1. We can find this line as follows. Let l′ be any
line that does not contain P1. The lines joining P1 to
all the other points of P, intersect l′ in at most n − 1
points. Let Q be any other point on l′. We let l0 be
the line through P1 and Q. Let A be the intersection of
a connecting line with l0 such that no other connecting
line intersects the segment P1A. If the connecting line
through A is incident with exactly two points, say P2

and P3 (we reindex the points, if necessary), then we
are done. Otherwise, let P4 be a third point on this
connecting line (Figure 1). Of the three points, at least
two are on the same side of A. Let us assume that
these are P2 and P3 so that we have the configurations
[P2P3A] and either [P4P2P3] or [P3AP4] (Figure 1).

We make the following claim.

Claim 2.1 The connecting line l1 through P1 and P2 is
ordinary.

Proof. If not, let P5 be a third point on l1. We have
then three different configurations to consider:

• [P5P1P2] : In this case the connecting line through
P5 and P3 intersects P1A (Figure 2, left-hand con-
figuration).

• [P1P5P2] : In this case the connecting line through
P5 and P4 intersects the segment P1A (Figure 2,
right-hand configuration).



19th Canadian Conference on Computational Geometry, 2007

P2 P3

P1

l0

A P4?P4?

Figure 1: Points on the connecting line through A

• [P5P2P1] : Similar to Case 2.

The conclusion in all three cases contradicts that P1A
is intersection-free. Hence the line l1 is ordinary. ¤

A P4?

P5

P5

P4?

P2

P1

P4?

P1

P2 P3 A P4? P3

Figure 2: Illustration of Cases 1 and 2

The following observation by Kelly explains how the
above construction might have been found. First, a
small definition: Let P be any point of P. The con-
necting lines of the set P − {P} dissect the plane into
different regions. The connecting lines that bound the
region in which P lies are said to be its neighbours (see
Figure 3).

P

Figure 3: Neighbours of P

Observation 1 [2] If there are no ordinary lines
through a point P , then every neighbour of P is an or-
dinary line.

Thus an efficient method for computing A would yield
a fast algorithm for finding an ordinary line.

3 The algorithm

First, we want to choose a point P1 and a line l0
through P1, such that all points of P ′ = P − {P1} are
on the same side of l0. If there is a unique left-most (or
bottom-most, etc.) point of P, then P1 can be chosen
as one of these points, and l0 can be chosen as the
vertical (or horizontal) line through P1. If there is no
“easy” choice for P1, then we can construct the convex
hull, C, of P. Choose P1 as a vertex of C, and choose
l0 as a tangent to C, through P1, upon which no edge
of C is incident.

Consider the points of intersection of the connecting
lines of P ′ with l0. We want to find the intersection
point, A, closest to P1, but not identical with P1.

Note: It might be that all the points of P ′ are
collinear, and that the supporting line of P ′ is parallel
to the l0 that we have chosen. In this case, any line
defined by P1 and some point of P ′ will be ordinary.
This is true whenever the points of P ′ are collinear, not
just when the supporting line of P ′ is parallel to l0.

Assuming the points of P ′ are not collinear: We sort
the points of P ′ twice. First, we sort the points in angu-
lar order around P1, relative to l0. Then we sort within
each equivalence class (resulting from the previous sort)
according to distance from P1. Let θ(Q) be the coun-
terclockwise angle that P1Q makes with l0. We end up
with a two dimensional array L such that:

• For all i and j, if i < j then θ(L[i, k]) < θ(L[j, l])
for all k and l; and

• For all i and j, if i < j then distance(P1, L[k, i]) <
distance(P1, L[k, j]) for all k.

We do not want the intersection point to be on P1,
so we do not try pairs of points in the same sub-array
of L.

Claim 3.1 The intersection point closest to P1, but not
identical with P1, will be made by a connecting line that
joins two points of P ′ that are in adjacent sub-arrays in
L.

Proof. Let Q and R be the points whose supporting
line QR intersects l0 at A, such that A is the closest
intersection point to P1, that is not identical with P1.
Assume that Q and R are in non-adjacent sub-arrays of
L, with Q being closer to l0 than R is. So, there is some

point S between the rays
−−→
P1Q and

−−→
P1R (see Figure 4).

If S is on the same side of QR as P1, then the line RS



CCCG 2007, Ottawa, Ontario, August 20–22, 2007

will intersect l0 at a point closer to P1 than A is. If S is
on the side of QR not containing P1, then the line QS
will intersect l0 at a point closer to P1 than A is. Either
way, there is a contradiction. ¤

S

l0

P1 A

R

Q

Figure 4: Intersection with l0 of the join of non-adjacent
points, Q and R

We do not want to try all combinations of points in
adjacent sub-arrays to find the pair that generates the
closest intersection point. We would like to test only a
constant number of combinations for each pair of adja-
cent sub-arrays.

Claim 3.2 Of all pairs of points from two adjacent sub-
arrays, the first point from one sub-array and the last
point from the other will generate the closest intersec-
tion point.

Proof. Let Q and R be the points from two adjacent
sub-arrays of L, whose supporting line QR intersects l0
at A, such that A is the closest intersection point to P1,
that is not identical with P1. Assume that Q is closer
to l0 than R is. If there is a point, S, in Q’s sub-array
that is closer to P1 than Q is, then RS will intersect l0
at a point closer to P1 than A is. If there is a point,
T , in R’s sub-array that is farther from P1 than R is,
then TQ will intersect l0 at a point closer to P1 than A
is. ¤

So we can find a pair of points that generate a
connecting line l1, for which the intersection point with
l0, at A, is closest to P1 without being identical with
P1. If l1 is an ordinary line, then we are done.

If l1 is not an ordinary line, there must be at least
three points of P ′ on l1. All of the points of P ′ are on
one side of l0, so if we imagine A cutting l1 into two
rays, then the points of P ′ on l1 are all on the same ray.
Of the points of P ′ on l1, let P3 be the closest to A, P2

the second-closest, and P4 the third-closest.

Claim 3.3 The line l2 = P1P2 is an ordinary line.

Proof. This follows from the discussion in the previous
section. ¤

A formal description of the algorithm is given in Fig-
ure 5.

Algorithm OrdinaryLine (P)

Step 1. Compute the convex hull, C, of P.

Step 2. Let P1 be some vertex of C, and let l0 be a
tangent to C, through P1, upon which no edge of
C is incident.

Step 3. Create L as defined above.

Step 4. For each pair, (Q,R), of extreme (first or last
in their sub-array) points in adjacent sub-arrays of
L:

Step 4.1. Let l′
1

= QR, and let A′ be the intersec-
tion of l′

1
with l0.

Step 4.2. If A′ is closer to P1 than the current clos-
est intersection point, A, then let A = A′, and
l1 = l′

1
.

Step 5. If l1 is ordinary, then report l1 and stop.

Step 6. Find the second-closest point, P2, to A, on l1.

Step 7. Report l2 = P1P2.

Figure 5: Our ordinary line algorithm

3.1 Analysis of the algorithm

Steps 1 and 3 will take O(n log n) time. Steps 2 and
7 can be done in constant time, and Steps 4, 5, and 6
in linear time. So the complexity of the algorithm is in
O(n log n).

4 Conclusion

Here we have presented a simple O(n log n) time algo-
rithm for finding an ordinary line from a set of n points.
An interesting question is that of finding a non-trivial
lower bound for this problem. The authors currently do
not know of any such bound.

References

[1] E. Artin. Geometric Algebra. Interscience, New York,
1957.

[2] H. Coxeter. A problem of collinear points. American

Mathematical Monthly, 55:26–28, 1948.



19th Canadian Conference on Computational Geometry, 2007

[3] H. Coxeter. Introduction to Geometry. J. Wiley and
Sons, 1969.

[4] H. Edelsbrunner. Algorithms in Combinatorial Geome-

try. Springer-Verlag, 1987.

[5] P. Erdos. Problem 4065. American Mathematical

Monthly, 50:65, 1943.

[6] T. Gallai. Solution to problem 4065. American Mathe-

matical Monthly, 51:169–171, 1944.

[7] H. Hadwiger, H. Debrunner, and V. Klee. Combinato-

rial Geometry in the plane. Holt, Rinehart and Winston
Inc., New York, 1964.

[8] L. M. Kelly and W. O. J. Moser. On the number of
ordinary lines determined by n points. Canad. J. of

Math., 10:210–219, 1958.

[9] T. Motzkin. The lines and planes connecting the points
of a finite set. Trans. Amer. Math. Soc., 70:451–464,
1951.

[10] A. Mukhopadhyay, A. Agrawal, and R. M. Hosabettu.
On the ordinary line problem in computational geome-
try. Nordic J. of Computing, 4(4):330–341, 1997.

[11] R. Steinberg. Three point collinearity. American Math-

ematical Monthly, 51:169–171, 1944.

[12] J. J. Sylvester. Mathematical questions 1851. Educa-

tional Times, 59:98, 1893.


