The Ordinary Line Problem Revisited

Asish Mukhopadhyay *†

Eugene Greene *‡

Abstract

Let \mathcal{P} be a set of n points in the plane. A connecting line of \mathcal{P} is a line that passes through at least two of its points. A connecting line is called ordinary if it is incident on exactly two points of \mathcal{P} . If the points of \mathcal{P} are not collinear then such a line exists. In fact, there are $\Omega(n)$ such lines [8]. In this note, we present a very simple algorithm for finding an ordinary line, assuming that the points of \mathcal{P} are not collinear.

1 Introduction

Let \mathcal{P} be a set of n points in the plane. A connecting line of \mathcal{P} is a line that passes through at least two of its points. Let \mathcal{S} be the set of all connecting lines. A line $l \in \mathcal{S}$ is said to be an ordinary line if it passes through exactly two points of \mathcal{P} .

The problem of establishing the existence of such a line originated with Sylvester [12], who proposed the following problem in 1893:

If n points in the plane are such that a line passing through any two of them passes through a third point, then are the points collinear?

No solution came forth during the next forty years. In 1943, a positive version of the same problem was proposed by Erdos [5], and was solved by Gallai in the following year [6].

Subsequently other proofs also appeared, notable among which were the proofs by Steinberg [11] and Kelly [2]. These results show that the answer is in the affirmative for plane projective geometry. Therefore if the points of \mathcal{P} are not collinear then there is at least one ordinary line. In fact, Kelly and Moser [8] showed that there are at least 3n/7 ordinary lines.

In [10] two different algorithms are reported for computing an ordinary line. One is based on parametric search, while the other uses dualization. Here we present a very simple algorithm that works in the primal plane.

The paper is organized as follows: In section 2, we discuss the existence of an ordinary line. In the following section we present our algorithm.

2 Existence of an ordinary line

We will henceforth assume that the given set of points is non-collinear. One (constructive) proof of existence, due to Kelly, can be found in [4]. The algorithm that it implies is in $O(n^3)$. Other existence proofs can be found in [9], [7]. The proof that we discuss below leads to an efficient algorithm. It is described in [3] in the setting of ordered geometry, in a strictly axiomatic way [1]. Our treatment on the other hand is more intuitive.

Let [ABC] denote a configuration of three distinct, collinear points A, B, C with B lying between A and C. Let l_0 be a line incident with exactly one point of \mathcal{P} , say P_1 . We can find this line as follows. Let l' be any line that does not contain P_1 . The lines joining P_1 to all the other points of \mathcal{P} , intersect l' in at most n-1points. Let Q be any other point on l'. We let l_0 be the line through P_1 and Q. Let A be the intersection of a connecting line with l_0 such that no other connecting line intersects the segment P_1A . If the connecting line through A is incident with exactly two points, say P_2 and P_3 (we reindex the points, if necessary), then we are done. Otherwise, let P_4 be a third point on this connecting line (Figure 1). Of the three points, at least two are on the same side of A. Let us assume that these are P_2 and P_3 so that we have the configurations $[P_2P_3A]$ and either $[P_4P_2P_3]$ or $[P_3AP_4]$ (Figure 1).

We make the following claim.

Claim 2.1 The connecting line l_1 through P_1 and P_2 is ordinary.

Proof. If not, let P_5 be a third point on l_1 . We have then three different configurations to consider:

- $[P_5P_1P_2]$: In this case the connecting line through P_5 and P_3 intersects P_1A (Figure 2, left-hand configuration).
- $[P_1P_5P_2]$: In this case the connecting line through P_5 and P_4 intersects the segment P_1A (Figure 2, right-hand configuration).

^{*}School of Computer Science, University of Windsor, Windsor, Canada

 $^{^{\}dagger} \texttt{asishm@cs.uwindsor.ca},$ Partially supported by an NSERC operating grant

 $^{^{\}ddagger} \texttt{greene6@uwindsor.ca},$ Supported by an NSERC USRA

Figure 1: Points on the connecting line through A

• $[P_5P_2P_1]$: Similar to Case 2.

The conclusion in all three cases contradicts that P_1A is intersection-free. Hence the line l_1 is ordinary. \square

Figure 2: Illustration of Cases 1 and 2

The following observation by Kelly explains how the above construction might have been found. First, a small definition: Let P be any point of \mathcal{P} . The connecting lines of the set $\mathcal{P} - \{P\}$ dissect the plane into different regions. The connecting lines that bound the region in which P lies are said to be its *neighbours* (see Figure 3).

Figure 3: Neighbours of P

Observation 1 [2] If there are no ordinary lines through a point P, then every neighbour of P is an ordinary line.

Thus an efficient method for computing A would yield a fast algorithm for finding an ordinary line.

3 The algorithm

First, we want to choose a point P_1 and a line l_0 through P_1 , such that all points of $\mathcal{P}' = \mathcal{P} - \{P_1\}$ are on the same side of l_0 . If there is a unique left-most (or bottom-most, etc.) point of \mathcal{P} , then P_1 can be chosen as one of these points, and l_0 can be chosen as the vertical (or horizontal) line through P_1 . If there is no "easy" choice for P_1 , then we can construct the convex hull, C, of \mathcal{P} . Choose P_1 as a vertex of C, and choose l_0 as a tangent to C, through P_1 , upon which no edge of C is incident.

Consider the points of intersection of the connecting lines of \mathcal{P}' with l_0 . We want to find the intersection point, A, closest to P_1 , but not identical with P_1 .

Note: It might be that all the points of \mathcal{P}' are collinear, and that the supporting line of \mathcal{P}' is parallel to the l_0 that we have chosen. In this case, any line defined by P_1 and some point of \mathcal{P}' will be ordinary. This is true whenever the points of \mathcal{P}' are collinear, not just when the supporting line of \mathcal{P}' is parallel to l_0 .

Assuming the points of \mathcal{P}' are not collinear: We sort the points of \mathcal{P}' twice. First, we sort the points in angular order around P_1 , relative to l_0 . Then we sort within each equivalence class (resulting from the previous sort) according to distance from P_1 . Let $\theta(Q)$ be the counterclockwise angle that $\overline{P_1Q}$ makes with l_0 . We end up with a two dimensional array L such that:

- For all i and j, if i < j then $\theta(L[i, k]) < \theta(L[j, l])$ for all k and l; and
- For all i and j, if i < j then $distance(P_1, L[k, i]) < distance(P_1, L[k, j])$ for all k.

We do not want the intersection point to be on P_1 , so we do not try pairs of points in the same sub-array of L.

Claim 3.1 The intersection point closest to P_1 , but not identical with P_1 , will be made by a connecting line that joins two points of \mathcal{P}' that are in adjacent sub-arrays in L.

Proof. Let Q and R be the points whose supporting line \overline{QR} intersects l_0 at A, such that A is the closest intersection point to P_1 , that is not identical with P_1 . Assume that Q and R are in non-adjacent sub-arrays of L, with Q being closer to l_0 than R is. So, there is some point S between the rays $\overline{P_1Q}$ and $\overline{P_1R}$ (see Figure 4). If S is on the same side of \overline{QR} as P_1 , then the line \overline{RS}

will intersect l_0 at a point closer to P_1 than A is. If S is on the side of \overline{QR} not containing P_1 , then the line \overline{QS} will intersect l_0 at a point closer to P_1 than A is. Either way, there is a contradiction.

Figure 4: Intersection with l_0 of the join of non-adjacent points, Q and R

We do not want to try all combinations of points in adjacent sub-arrays to find the pair that generates the closest intersection point. We would like to test only a constant number of combinations for each pair of adjacent sub-arrays.

Claim 3.2 Of all pairs of points from two adjacent subarrays, the first point from one sub-array and the last point from the other will generate the closest intersection point.

Proof. Let Q and R be the points from two adjacent sub-arrays of L, whose supporting line \overline{QR} intersects l_0 at A, such that A is the closest intersection point to P_1 , that is not identical with P_1 . Assume that Q is closer to l_0 than R is. If there is a point, S, in Q's sub-array that is closer to P_1 than Q is, then \overline{RS} will intersect l_0 at a point closer to P_1 than A is. If there is a point, T, in R's sub-array that is farther from P_1 than R is, then \overline{TQ} will intersect l_0 at a point closer to P_1 than A is.

So we can find a pair of points that generate a connecting line l_1 , for which the intersection point with l_0 , at A, is closest to P_1 without being identical with P_1 . If l_1 is an ordinary line, then we are done.

If l_1 is not an ordinary line, there must be at least three points of \mathcal{P}' on l_1 . All of the points of \mathcal{P}' are on one side of l_0 , so if we imagine A cutting l_1 into two rays, then the points of \mathcal{P}' on l_1 are all on the same ray. Of the points of \mathcal{P}' on l_1 , let P_3 be the closest to A, P_2 the second-closest, and P_4 the third-closest. Claim 3.3 The line $l_2 = \overline{P_1 P_2}$ is an ordinary line.

Proof. This follows from the discussion in the previous section. \Box

A formal description of the algorithm is given in Figure 5.

Algorithm OrdinaryLine (P)

Step 1. Compute the convex hull, C, of \mathcal{P} .

Step 2. Let P_1 be some vertex of C, and let l_0 be a tangent to C, through P_1 , upon which no edge of C is incident.

Step 3. Create L as defined above.

Step 4. For each pair, (Q, R), of extreme (first or last in their sub-array) points in adjacent sub-arrays of L:

Step 4.1. Let $l'_1 = \overline{QR}$, and let A' be the intersection of l'_1 with l_0 .

Step 4.2. If A' is closer to P_1 than the current closest intersection point, A, then let A = A', and $l_1 = l'_1$.

Step 5. If l_1 is ordinary, then report l_1 and stop.

Step 6. Find the second-closest point, P_2 , to A, on l_1 .

Step 7. Report $l_2 = \overline{P_1 P_2}$.

Figure 5: Our ordinary line algorithm

3.1 Analysis of the algorithm

Steps 1 and 3 will take $O(n \log n)$ time. Steps 2 and 7 can be done in constant time, and Steps 4, 5, and 6 in linear time. So the complexity of the algorithm is in $O(n \log n)$.

4 Conclusion

Here we have presented a simple $O(n \log n)$ time algorithm for finding an ordinary line from a set of n points. An interesting question is that of finding a non-trivial lower bound for this problem. The authors currently do not know of any such bound.

References

- E. Artin. Geometric Algebra. Interscience, New York, 1957.
- [2] H. Coxeter. A problem of collinear points. American Mathematical Monthly, 55:26–28, 1948.

- [3] H. Coxeter. Introduction to Geometry. J. Wiley and Sons, 1969.
- [4] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.
- [5] P. Erdos. Problem 4065. American Mathematical Monthly, 50:65, 1943.
- [6] T. Gallai. Solution to problem 4065. American Mathematical Monthly, 51:169–171, 1944.
- [7] H. Hadwiger, H. Debrunner, and V. Klee. Combinatorial Geometry in the plane. Holt, Rinehart and Winston Inc., New York, 1964.
- [8] L. M. Kelly and W. O. J. Moser. On the number of ordinary lines determined by n points. Canad. J. of Math., 10:210–219, 1958.
- [9] T. Motzkin. The lines and planes connecting the points of a finite set. Trans. Amer. Math. Soc., 70:451–464, 1951.
- [10] A. Mukhopadhyay, A. Agrawal, and R. M. Hosabettu. On the ordinary line problem in computational geometry. *Nordic J. of Computing*, 4(4):330–341, 1997.
- [11] R. Steinberg. Three point collinearity. American Mathematical Monthly, 51:169–171, 1944.
- [12] J. J. Sylvester. Mathematical questions 1851. Educational Times, 59:98, 1893.