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ABSTRACT

Let G be a finite simple graph having a maximum matching M. The
deficiency def(G) of G is the number of M-unsaturated vertices in G.
In an earlier paper we determined an upper bound for def(G) when G is
regular and connected. This upper bound is in general not sharp when G
is triangle free. In this paper we study the case when G is triangle
free and r-regular. We present an upper bound for def(G) and determine
the set of all possible values of def(G) when G is r-regular and

(r-2)-edge~connected.

1. INTRODUCTION

In this paper the graphs are finite, loopless and have no
multiple edges. For the most part our notation and terminology follow
Bondy and Murty [2]. Thus G is a graph with vertex set V(G), edge set
E(G), v(G) vertices and €(G) edges. However we denote the complement
of G by G.

A matching‘M in G is a subset of E(G) in which no two edges have
a vertex in common. M is a maximum matching if |M| = |M’| for any
other matching M’ of G. A vertex v is saturated by M if some edge of M
is incident with v; otherwise v is said to be unsaturated. A matching

M is perfect if it saturates every vertex of the graph. The deficiency
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def(G) of G is the number of vertices unsaturated by a maximum matching
M of G. Observe that def(G) = v(G) - 2|M|. Consequently, def(G) has
the same parity as v(G), and def(G) = 0 if and only if G has a perfect
matching.

Many problems concerning matchings and deficiency in graphs have
been investigated in the literature - see, for example Lovasz and
Plummer [6]. We have studied the function def(G) for: the case when G
is a tree with each vertex having degree 1 or k, k =2 2 [3]; the case
when G is a cubic graph [4]; and the more general case when G is
r-regular [5].

It is convenient to let ¥(n,r,k) denote the class of r-regular,
k—e&ge—connedted’ graphs on n vertices. The set of triangle free
members of §(n,r,k) is denoted by &' (n,r,k).

In [4] we obtained the set of all possible values of def(G) when
G € §(n,r,k) for k = 2. In this paper we focus on the problem of
determining the set of all possible values of def(G) when G e g’ (n,r,k)
for r =z 4; the case r=3 was resolved in [4]. Here we resolve this
problem wheﬁ’k = r-2 and present an upper bound on def(G) for the

general case.

2.’ UPPER BOUND

An upper bound for def(G) when G € §(n,r,k) was determined in
[5]. This bound is generally not sharp when G is triangle free. In
this section wekpresent an upper bound for def(G) when G e §’(n,r,k)
which is sharp for k = r-2.

The following lemma is easily established by simple counting and

application of Turan’s theorem.

74




Lemma 2.1: Let G € § (n,r,1), r 2 3 and S ¢ V(G). If Go is an odd
component of G-S which 1is joined to S by at most r-2 edges, then

v(Go) z 2r+l. o
Our next lemma was proved in [5].

Lemma 2.2: Let G be an r-regular, connected graph having def(G) =# 1.
Suppose that for any ¢ = V1 c V(G) every odd component of G - V1 is
joined to V1 by not less than m edges, 1 = m = r-2 (m = r(mod 2)). Then
there exists a non-empty set S ¢ V(G) such that G-S has ¢ =z ?gﬁ def (G)

odd components joined to S by at most r-2 edges. o
We now establish an upper bound on def(G).
Theorem 2.1: let G € §'(n,r,1), r =z 4. If for any non-empty set

S < V(G) every odd component of G-S is joined to S by at least m edges,

where 1 =m = r-2 and m = r(mod 2), then

r-m rn . .
(a) def (G) = 2| T L — 11 if n is even ;
2r° + r+m

2r? + rem 3r
(b) def (G) = 1, if n is odd and n < =~ "~ r — ;
(c) def (G) =1 + 2] rnm | ——EIL———-J -1 I otherwise.

2r 2 2
2r- + r+m
Proof: The result is trivially true when def(G) = 0 and also when

def(G) = 1 as in this case n must be odd. So suppose def(G) = 2.
Lemma 2.2 implies that there exists a non-empty set S ¢ V(G) such that

G - S has
r
L= o def (G) (2.1)
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odd components, Gi’Gz""’Gé say, each of which is joined to S by at

most r-2 edges.

By simply counting the edges between S and these odd components

we can conclude that r|S| = fm and hence |S| = é? . Now
12
n=|s|+ ) v(G) = Iy paren) (Lemma 2.1)
i r : :
i=1
Consequently
b= | —/—— ] . - (2.2)

2r® + r+m
(2.1) and (2.2) together yield
r-m rn
def (G) 5—;:‘- L%J

2
2r- 4 r+m

Now when n is even, def(G) must be even and thus we can write

def () = 2| 2 | ;—gﬂz—m—— 1]
r r+m

proving (a). When n is odd, def(G) must be odd and hence

3 = def(c) = =0 | I
r

2
2r° + r+m

Therefore

and hence

Thus if n < nos then def(G) = 1, proving (b). If n = n,» then we can

write
- r-m rn ' 1
def(G) =1 + 2| 520 | ——— | -5 |,
2r7 + r+m
proving (c). This completes the proof of the theoren. O
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"For the case when G € §’ (n,r,k) we have the following corollaries

of Theorem 2.1.

Corollary 1: Let G € § (n,r,k) with r 2 4 and 1 = k < r-2. Then

r-k’ rn . R
(a) def (G) = 2| S L ——5—————~7~Jj , if n is even ;
2r- + r+k
2
. . 2r7 + r+k’ 3r i

(b) def (G) = 1, if n is odd and n < = f F:E’] ;
(c) def(G) = 1 + 2| 2K | _rn | - 3], otheruise;

2r 2 , 24 ’

2r7 + r+k

where k’ is the least integer not less than k which has the same parity

as r. a

Corollary 2: Llet G € §'(n,r,k) with r 24, 1 sk = r-2 and n even. If

G has no perfect matching, then

2
2r- + r+k’ 2r
n= - [ — I

where k’ is the least integer not less than k which has the same parity

as r. o

3. THE CLASS §'(n,r,r-2)

In this section we determine the set
D(n,r,r-2) = {def(G) : G € & (n,r,r-2)} ,

for r =z 4. We begin with some constructions. The graph A(2n,r) is

defined as follows. Take the empty graph Kzn with vertices
R . 1

U Uy U VLY, Form the Hamilton cycle Hi’ 1=1i=| 5T B

by Jjoining uj to Vzi+j~2 and vzi+j—1 for each j, 1 = j = n; all

integers are reduced modulo n when necessary. Define the matching M as



M={uv. : 1=1=nand j=1i+r-1 (mod n)}). Now we define A(2n,r)

i
as
L
2
U H. , if r is even,
i=1 '
A(2n,r) =
2tr-1)
U Hy UM , ifr is odd.
i=1

Observe that A(2n,r) is an r-regular graph with a perfect matching. As

to the edge-connectivity of A(2n,r) we have

Lemma 3.1:
(a) k’(A(2n,r)) = r, and

(b) k' (A(2n,r)-x) = r-2 for any vertex x of A(2n,r).

Proof: We prove only (b) as (a) has already been observed by Bollobas
and Eldridge [1]. Without loss of generality consider A(Zn,r)—uf
Suppose that K’(A(Zn,r)—ul) = t < r-2 and let (Vl,vl) be an

edge-cut set of size t with [V1| N Then ]VI| = 2 and there are

.
two Hamilton paths, P1 and P2 say each having exactly one edge of the

cut (vl,Vl). Then from the construction of A(2n,r) we have

P =v

LU v, uo ... v,
1 21 "2 2i+1 3 2i-1
and P =v_ .,u v, u ...v_, ,
2 2j 2 2j+1 3 2j-1
for some i # j. With no loss of generality let V,i€ Vl. Then since

|V1[ = 2 we must have u, € V1’ as otherwise P1 would have at least two
edges of the cut (Vl,Vl]. Let wzw;, z =1, 2, be the edge of PZ in the

cut (vl,Vl). Then
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vV = {v_,,u,v IR
1 { 21’ 72" 2i+1’ 73’ '
d also V o= A{v_.,u,v_, ,u,...,w}
an 1 { 2j’ 2" 2§+’ 3’ 'T2
Thus if V1 contains p of the vertices vl,vz,“.,vn, then
vV_.,V_. ce sV, = \WV_.,V . e,V
{ 21’ "2i+1’ ! 21+p—1) { 2j’ 2j+1’ ' 23+p-1)

Hence 2j = 2i + t (mod n) for some positive integer t. Now when 191]

v

2 we must have p < n and 1 = t s p - 1. But then 2j + p - t =

2i + p {mod n) implying that v =

2j-t+p V21+p € Vl, contradicting the

fact that p < n. This proves (b). a]

The graph B(2n+1,r) on (2n+1) vertices is defined as follows.

Take the graph A(2n,r) - u, and add two new vertices x and y. Join x
. 1 . .

to y and to each Vis 1 = i = | 5T }, and join y to each Vi

L %r ] +1 =1=r. Call the resulting graph B(2n+1,r). Note that x

and y have degree L %r J + 1 and r %r ] + 1 respectively and every

other vertex has degree r. Also k’(B(2n+1,r)) = %r.
The graphs A(2n,r) and B{(2n+1,r) are the basic building blocks in
our constructions. We next construct a triangle free r-regular graph

G(m,r) of odd order m = gr having deficiency 1. Our construction

depends on the parity of %r.

Consider the graph A(2n,r). Observe that the subgraph of A(2n,r)

induced by the vertices (ul,uz,...,u

s

. . v ,...,vr} is the
-T  =T+1 =r+2
2 2

2
complete bipartite graph K1 s with bipartitioning sets
~T,~I
2’2
“ﬁ’uz"“dﬂ } and (v1 vy ""'Vr)’ The edges of this subgraph
51‘ Er"‘l EI‘“"Z
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can be partitioned into lr disjoint matchings M1’M2""’M1 . We may

2
-r
. 1
take M. = {u,v 11 =i = 2r}.
1 1. 2
~r+i
2
For %r odd we form the graph G(2n + %r,r) from
X 1 .
A(Zn,r)\{Ml,MZ,.‘,,er} by adding 5T new vertices, wl,wz,...,wlr say,
2 2
and joining each of these to the r vertices ul,uz,...,u1 ,vl ,
r  cr+i
2 2
ViV Observe that G(2n + %r,r) is a triangle free graph on
Zr+2
2

2n + %r vertices that is r-regular. We will later establish that this

graph is r-edge-connected.

Now we consider the case when lr is even. Recall that

2
H = uv uv u ... Vv u
1 11 21 3 1 1
-r+1 ~T'+2 —I'+3 —I+1
4 2 2 2
and thus M1 < H1 . Form the graph G(2n+2,r) as follows. Take
“r+1
4
A(Zn,r)\{u.lv1 11 =1 =r} and add two vertices, x and y, say. Join
~Ir'+1
2
x to wu,u,...,u, and join y to v s eV Call the
1’72 r r

17
=+l  =T+2
2 2
resulting graph G(2n+2,r). Observe that the graph is triangle free,
has 2n+2 vertices and is r-regular. Further, G(2n+2,r) contains as a
spanning subgraph the graph Go whose edge-set is specified as :
r
E(G) = (H, Muy v, i lsisr)) 'U (xui,yv1 _}

~T+1 ~r+i i=1 —r+i

4 2 2
Observe that G0 is the union of r edge-disjoint (x,y)-paths and thus is

2-edge-connected. Further, the graph (G(2n+2,r)~{x,y})\E(GO) consists

N

of the 5

r-1 Hamilton cycles Hz’Ha""’H1 and thus 1is (r-2)-edge-
-r
2
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connected. It is easily established that G(2n+2,r) is r-edge-

connected.
For r z 4 we form the graph G(2n + %r+1,r) from
R 1 .
G(2n+2,r)\(M2,M3,...,M1 } by adding 5T 1 new vertices wl,wz,...,w1
=T ~r-1
2 2
and Jjoining each of these to the r vertices ul,uz,...,u1 ,v1 ,
= —I'+1
2 2
V1 eV The resulting graph is triangle free, has 2n + %r + 1
“r+2
2
vertices and is r-regular. Further, this graph is r-edge-connected

because of the following result.

Lemma 3.2: Let G be a k-edge-connected graph, k =z 1, and M be a
matching in G of size m =z f lk ] saturating the vertices v ,v_,...,v_ .
2 1’2 2m

Then the graph G’ obtained by adding a vertex u to G\M and joining it

to the vertices vl,vz,...,v2m is k-edge-connected.

Proof: Suppose k’(G’) =t < k and let E1 be a t-edge cut of G’ and let
Ez denote those elements of E1 that are incident to u. Note that E2 #
¢ since G is k-edge-connected. Let X denote the set of M-saturated
vertices of G that are, in G’, incident to Ez and M’ denote the set of
edges of M incident to exactly one vertex in X. The set
E' = (ENE)) UM
12
is an edge cut in G. But
[E] = [E| - [E| + M| = [E] = k-1,
1 2 1

contradicting the fact that «’(G) =z k. This proves the lemma. [a]

Application of Lemma 3.2 to the graphs G(m,r) for odd m = 2n + %r

or 2n + %r+1 establishes the r-edge-connectedness of these graphs. It



thus follows from Lemma 2.2 that def(G(m,r)) = 1.
We make use of the following lemma proved in [7] to establish our

main result in this section.

Lemma 3.3: For odd n, ¥’ (n,r,1) # ¢ if and only if r is even and

S
DZ‘ZF. =]

Now we are ready to determine D(n,r,r-2).

Theorem 3.1: For r =z 4,

(a) D(n,r,r-2) = ¢, if n and r are odd or n < 2r or

n < gr is odd;

(b) D(n,r,r-2)

[ij

{d: 0=ds=s2| ] . d is even},

2(r® + r-1)

if n =2 2r is even;

(¢) D(n,r,r-2) = {1} , if n is odd and g =n < 3(r2 + r-1) ;
n 1
(d) D(n,r,r-2) =4{d : 1 =d=1+2 L —a—— "3 ]
2{r" + r-1)
d is odd} , otherwise.

Proof: When §'(n,r,r-2) # ¢, then at least one of n or r is even, and
by Turan’s theorem n z 2r. Further, by Lemma 3.3, if n is odd, then
n =z zr. This proves (a). So suppose at least one of n or r is
even, n = 2r and n = gr if n is odd. The upper bound of def(G),
G € §(n,r,r-2), is determined in Corollary 1.

First we consider the «case when n is even. The graph
A(n,r) € §'(n,r,r-2) and has a perfect matcbiné. This gives the lower

bound of def(G) and proves (b) when n < 2(r° + r-1). Now let
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. n
2(r® + r-1)
We construct a graph G € ¥’ (n,r,r-2) with def(G) = d for each possible

= 2(r® + r-1) and d be an even integer, 2 =d = 2]

value of d as follows.

Let ¢ = %rd and s = %rd - d . Take the empty graph Ks with

vertices ul,uz,...,u , &1 copies Gl’Gz""’

G of B(2r+1,r) and a
s -1

copy Ge of B(n-d(r2+r—1)+2r+1,r). Note that n - d(r® + r-1) + 2r+l is

odd and is at least 2r+1 because of the upper bound on d. Further, for
. 1

1 =1i=¢, Gi has two vertices, Xy and y; say, of degree L 5T J + 1 and

f %r ] + 1 respectively. Then Jjoin each Xy and uj and each Yy to u_,

where i = j = i + [ %r J -1 < z = r-2. The resulting graph G is

triangle free, r-regular and has

v(G)

(8-1) (2r+1) + (n=d(r® + r-1) + 2r+1) + s

i

(rd=1)(2r+1) + (n=d(+* + r=1) + 2r+1) + (Srd-a)
=n .

We will now show that G is (r-2)-edge-connected. Suppose that
‘K'(G) = t < r-2, then there is t-edge cut, (Vl,Vl) say, of G. Lemma
3.1 implies that for each i, Gi~(xi,yi) is (r-2)-edge-connected, and
hence the vertices of G, —(x Y5 } are all in V1 or all in V

Let U1 = V1 n (ul,uz,...,us} and U2 = V n (u uz,...,us} . We
first prove that Ui # ¢, 1 = 1,2. Without loss of generality suppose
that U1 = ¢ . Then V(Gi) ¢ V1 for any i. Further V(Gi) n V1 # ¢ for
some i. Since t < r-2 and the vertices of Gi~{xi,yi} are all in V1 or
all in Vl, then V1 contains exactly one of Xi or yi. But each of these
possibilities results in t 2 r-2. Thus Ui ¢, 1= 1,%.

Since, for each i, G.l is %r—edge-connected, theﬁ‘there cannot be

more than one G.l for which V(Gi) n V1 # ¢ and V(Gi] n 01 # ¢. We now

define a graph G’ as follows. If there exists a Gi with V(Gi) n V1 z ¢



and V(Gi) n V: # ¢, then let
i+d-1
G =G- U V(G)
=i
where the integers are reduced modulo ¢ when necessary. If there is no

such Gi' then take

G =G -

e

V(G,
( J)

Jj=1

Then there exists an edge-cut set (Vz,vz) of G’ with less than r-2
edges. If we contract every Gi in G’ to a single vertex, then the

resulting graph G* is isomorphic to the graph A(2s,r-2). Further there

is an edge-cut set (V_,V) of G* with [V, V) < r2 This
contradicts the fact that A(2s,r-2) is (r-2)-edge-connected. Hence

G e §(n,r,r-2).
Now take S = {u ,u,...,u }. Then
1’2 s

o(G-8) ~ 8] =

and so def (G) = d.” Further, every component G.1 of G-S has def(Gi) =1,

and hence def(G) = d. Thus def(G) = d and this completes the proof

of (b).
Now consider the case when n is odd. The graph G(n,r) e

§’(n,r,r-2) and has deficiency one. This gives the lower bound of

def (G) and proves (c). Let n = %r . For each odd d,
3=d=1+2| —*-E—E"*——* -
2(r® + r-1)

I

N ==

we construct a graph G € ¥’ (n,r,r-2) with def(G) = d following the
procedure described for the case when n is even. This completes the

proof. u]

8y



REFERENCES

[1]

[2]

[3]

(4]

[6]

[7]

B. Bollobas and S.E. Eldridge. "Maximal matchings in graphs
with given minimal and maximal degrees", Math. Proc. Cambridge
Philos. Soc. 79 (1976), 221-234.

J.A. Bondy and U.S.R. Murty, "Graph Theory with Applications",
The MacMillan Press, London (1977).

L. Caccetta and Purwanto, "Deficiencies and vertex clique
covering numbers of a family of trees", The Australasian
Journal of Combinatorics, 1 (1990), 15-27.

L. Caccetta and Purwanto, "Deficiencies and vertex clique
covering numbers of cubic graphs", Graphs, Matrices and Designs
(in press).

L. Caccetta and Purwanto, “Deficiencies of r-regular k-edge-
connected graphs", The Australasian Journal of Combinatorics
(In press).

L. Lovéasz and M.D. Plummer, "Matching Theory", Annals of
Discrete math. 29, North-Holland, Amsterdam (1986).

N.J. Pullman and D. de Caen, "Clique coverings of graphs - I:
Clique partitions of regular graphs", Utilitas Mathematica,
19 (1981), 177-205.






