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Let G be a finite simple graph having a maximum matching M. The 

deficiency def(G) of G is the number of M-unsaturated vertices in G. 

In an earlier paper we determined an upper bound for def(G) when G is 

regular and connected. This upper bound is in general not sharp when G 

is triangle free. In this paper we study the case when G is triangle 

free and r-regular. We present an upper bound for defCG) and determine 

the set of all possible values of def (G) when G is r-regular and 

(r-2)-edge-connected. 

1. INTRODUCTION 

In this paper the graphs are finite, loopless and have no 

multiple edges. For the most part our notation and terminology follow 

Bondy and Murty [2]. Thus G is a graph with vertex set V(G), edge set 

E(G), v(G) vertices and c(G) edges. However we denote the complement 

of G by G. 

A matching M in G is a subset of E(G) in which no two edges have 

a vertex in common. M is a maximum matching if I M I :::: I M' I for any 

other matching M' of G. A vertex v is saturated by M if some edge of M 

is incident with v; otherwise v is said to be unsaturated. A matching 

M is perfect if it saturates every vertex of the graph. The deficiency 
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def(G) of G is the number of vertices unsaturated by a maximum matching 

M of G. Observe that def(G) = v(G) - 21MI. Consequently, def(G) has 

the same parity as v(G), and def(G) = 0 if and only if G has a perfect 

matching. 

Many problems concerning matchings and deficiency in graphs have 

been investigated in the literature - see, for example Lovasz and 

Plummer [6]. We have studied the function def(G) for: the case when G 

is a tree with each vertex having degree 1 or k, k ~ 2 [3J; the case 

when G is a cubic graph [4]; and the more general case when G is 

r-regular [5]. 

It is convenient to let ~(n,r,k) denote the class of r-regular, 

k-edge-connectea graphs on n vertices. The set of triangle free 

members of ~(n,r,k) is denoted by ~I(n,r,k). 

In [4] we obtained the set of all possible values of def(G) when 

G E ~(n,r,k) for k ;:: 2. In this paper we focus on the problem of 

determining the set of all possible values of def(G) when G E ~' (n,r,k) 

for r ~ 4; the case r=3 was resolved in [4J. Here we reso I ve thi s 

problem when k = r-2 and present an upper bound on def (G) for the 

general case. 

2. UPPER BOUND 

An upper bound for def(G) when G E ~(n,r,k) was determined in 

[5]. This bound is generally not sharp when G is triangle free. In 

this section we present an upper bound for def(G) when G E ~' (n,r,k) 

which is sharp for k = r-2. 

The following lemma is easily established by simple counting and 

application of Turan's theorem. 
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Lemma 2.1: Let G E ~' (n,r,i), r :=:: 3 and S c V(G). If G is an odd 
o 

component of G-S which is joined to S by at most r-2 edges, then 

o 

Our next lemma was proved in [5]. 

Lemma 2.2: Let G be an r-regular, connected graph having def(G) ~ 1. 

Suppose that for any ~ ~ V
l 

c V(G) every odd component of G - V
1 

is 

joined to V
l 

by not less than m edges, 1 s m s r-2 (m = r(mod 2)). Then 

there exists a non-empty set S c V(G) such that G-S has r 
r-m 

def(G) 

odd components joined to S by at most r-2 edges. o 

We now establish an upper bound on defCG). 

Theorem 2.1: Let G E ~/(n.r,i), r :=:: 4. If for any non-empty set 

S c V(G) every odd component of G-S is joined to S by at least m edges, 

where 1 s m s r-2 and m = r(mod 2), then 

(a) def{G) s 2 L r-m 
L 

rn JJ if n is zr , even ; 
2r2 + r+m 

(b) def(G) 1, if n is odd and n < 
2r2 + r+m r 3r 1 r r-m 

(c) def{G) s 1 + 2 L r-m 
2r L 

rn J - ~ J otherwise. 
2r2 + r+m 

Proof: The result is trivially true when def(G) = 0 and also when 

def(G) = 1 as in this case n must be odd. So suppose def (G) :=:: 2. 

Lemma 2.2 implies that there exists a non-empty set S c V(G) such that 

G - S has 
r 

r-m 
def(G) (2.1) 

75 



odd components, G
1

,G
2

, ... ,Gt say, each of which is joined to S by at 

most r-2 edges. 

By simply counting the edges between S and these odd components 

we can conclude that rlSI 2: tm and hence lSi 2: 
tm 
r 

t 

lSi L v(G. ) 
tm + t(2r+1) n 2: + 2: 

1 r 
i=l 

Consequently 

t ::: L rn J --- . 
2r2 + r+m 

(2.1) and (2.2) together yield 

Now when n is even, 

proving (a) . When 

Therefore 

and hence 

def(G) r-m 
L 

rn 
J ::: 

r 2r2 + r+m 

def(G) must be even and thus 

def(G) 2L 
r-m 

L 
rn ::: zr 2r2 + r+m 

n is odd, def(G) must be odd 

3 :::; def(G) r-m rn ::: 
r 2r2 + r+m 

3r 
r r-m :::; L rn J ' 

2r2 + r+m 

we 

JJ 

and 

J 

n 2: 
2r2 + r+m 

r r 3r 1 - = n r-m o' 

Now 

(Lemma 2.1) 

(2.2) 

can write 

hence 

Thus if n < then def(G) 1, proving (b) . If n 2: then we can 

write 

def(G) r-m 
::: 1 + 2L zr rn 1 J - 2 J ' 

2r2 + r+m 

proving (c). This completes the proof of the theorem. 
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For the case when G E ~'(n,r,k) we have the following corollaries 

of Theorem 2.1. 

Corollary 1 : Let G E ~'(n,r,k) with r 2:: 4 and ::s k ::s r-2. Then 

(a) def(G) 2L~~k'L rn 
JJ if n is ::s , even ; 

2r 2 + r+k' 

(b) def(G) 1, if n is odd and n < 
2r2 + r+k' r :~k,l r 

(c) def(G) 1 + 2 L 
r-k' 

L 
rn 1 

J ' otherwise; ::s ---zr "2 2 2r + r+k' 

where k' is the least integer not less than k which has the same parity 

as r. 0 

Corollary 2: Let G E ~'(n,r,k) with r 2:: 4, 1 ::s k ::s r-2 and n even. If 

G has no perfect matching, then 

n 2:: 
2r2 + r+k' r ~ 1 

r r-k" 

where k' is the least integer not less than k which has the same parity 

as r. o 

3. THE CLASS ~/(n.r.r-2) 

In this section we determine the set 

D(n,r,r-2) = {defCG) : G E ~'(n,r,r-2)} , 

for r 2:: 4. We begin with some constructions. The graph A(2n,r) is 

defined as follows. Take the empty graph K with vertices 2n 

Form the Hamilton cycle Hi' 1 ::s i 

by joining u. to v .. and v .. for each j, j 21+j-2 21+j-l ::s j ::s n; all 

integers are reduced modulo n when necessary. Define the matching M as 



::::; nand j - + r-1 (mod n)}. Now we define A(2n,r) 

as 
1 
Zr 

{ 
U H. if r is even, 

i=1 
1 

A(2n,r) 
1 
Z(r-l) 

U H. U M if r is odd. 
i=1 

1 

Observe that A(2n,r) is an r-regular graph with a perfect matching. As 

to the edge-connectivity of A(2n,r) we have 

Lemma 3.1: 

(a) K I (A (2n, r)) = r, and 

(b) K' (A(2n,r)-x) ~ r-2 for any vertex x of A(2n,r). 

Proof: We prove only (b) as (a) has already been observed by Bollobas 

and Eldridge [1]. Without loss of generality consider A(2n,r)-u
1

. 

Suppose that K' (A(2n,r)-u
1

) = t < r-2 and let (V , V) be an 
1 1 

Then IV11 ~ 2 and there are 

two Hamilton paths, P
1 

and P
2 

say each having exactly one edge of the 

cut (V
1

,V
1
). Then from the construction of A(2n,r) we have 

and 

P 
1 

P 
2 

v . u v. U 
2J 2 2J+1 3 

v . 
2J-l 

for some i *" j. With no loss of general ity let v 2i E V 1 . Then since 

I V1 1 ~ 2 we must have u2 E VI' as otherwise PI would have at least two 

edges of the cut (V ,V ). 
1 1 

Let W Wi 
Z z' 
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and also v = {v ., u ,v. ,u, ... , w } 
1 2J 2 2J+I 3 2 

Thus if V
1 

contains p of the vertices v
l
,v2"" ,vn ' then 

Hence 2j = 2i + t (mod n) for some positive integer t. Now when IVII ~ 

2 we must have p < nand 1 :5! t :5! P - 1. But then 2j + P t -

2i + P (mod n) implying that v . t = V. E V , contradicting the 
2J- +p 21+P I 

fact that p < n. This proves (b). o 

The graph B(2n+1, r) on (2n+1) vertices is defined as follows. 

Take the graph A(2n,r) - U 
1 

and add two new vertices x and y. Join x 

to y and to each vi' 1 :5! i :5! L ~r J, and join y to each vi' 

1 L Zr J + 1 :5! i :5! r. Call the resulting graph B(2n+1,r). Note that x 

1 
and y have degree L Zr J 1 

+ 1 and r zr 1 + 1 respectively and every 

other vertex has degree r. 
1 

Also K' (B (2n+1, r)) ~ Zr. 

The graphs A(2n,r) and B(2n+l,r) are the basic building blocks in 

our constructions. We next construct a triangle free r-regular graph 

G(m,r) of odd order m ~ .:?r having deficiency 1. 
2 

Our construction 

1 
depends on the parity of Zr. 

Consider the graph A(2n,r). Observe that the subgraph of A(2n,r) 

induced by the vertices is the 

complete bipartite graph with bipartitioning sets 

and { v 1 ' V 1 ' . • • , v r } . The edges of this subgraph 
-r+l -r+2 
2 2 
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1 
can be partitioned into Zr disjoint matchings Mi ,M2,··· ,Mi' We may 

take M 
1 

{u.v 
1 1 . -r+1 

2 

1 1· 1} :s :s Zr , 

-r 
2 

For 1 
Zr odd we form the graph G(2n + 

1 
Zr.r) from 

A(2n.r)\{M
1

,M2,··· ,M
1 

1 by adding Zr new vertices, w
1

.w2' .... w
1 

say. 
-r 
2 

and joining each of these to the r vertices 

-r 
2 

ui ' u2' ... ,u1 • vi 
-r -r+l 
2 2 

Vi , ... ,vr 
1 Observe that G(2n + Zr,r) is a triangle free graph on 

-r+2 
2 

2n + ~r vertices that is r-regular, We will later establish that this 

graph is r-edge-connected. 

Now we consider the case when 1 is even. Recall that 

and thus M S;; H 
1 1 -r+l 

4 

H 
1 -r+i 
4 

u V 
1 1 -r+2 

2 

u v U 
213 -r+3 

2 

V 
1 -r+i 
2 

U 
1 

Form the graph G(2n+2, r) as follows. Take 

A (2n, r ) \ { u i v 1 : 1 :s :s r} and add two vertices, x and y, say. Join 
-r+l 
2 

x to and join y to Vi ,vi , ... ,vr ' Call the 
-r+l -r+2 
2 2 

resulting graph G(2n+2,r). Observe that the graph is triangle free. 

has 2n+2 vertices and is r-regular. Further, G(2n+2,r) contains as a 

spanning subgraph the graph Go whose edge-set is specified as : 

E(G ) 
o 

(H 
1 -r+i 
4 

\{u.v 
1 1 . -r+1 

2 

:s r}) 
r 
U 

i=l 
{xu .• yv } 

1 1 . -r+1 
2 

Observe that Go is the union of r edge-disjoint (x,y)-paths and thus is 

2-edge-connected. 

the .!r-l 

Further, the graph (G(2n+2,r)-{x,y})\E(G
o

) consists 

of 
2 

Hamilton cycles H
2

,H
3
",· ,Hi 

-r 
2 
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connected. It is easily established that G(2n+2,r) is r-edge-

connected. 

For r ~ 4 we form the graph 1 G(2n + 2"r+l, r) from 

G(2n+2,r)~{M2,M3"" ,M
i 

} by adding ~r-l 
-r 
2 

new vertices 

and joining each of these to the r vertices u
i
,u2'··· ,ul 

,Vi 
-r -r+i 
2 2 

1 The resulting graph is triangle free, has 2n + 2"r + 1 Vi , ... ,vr · 
-r+2 
2 

vertices and is r-regular. Further, this graph is r-edge-connected 

because of the following result. 

Lemma 3.2: Let G be a k-edge-connected graph, k ~ 1, and M be a 

matching in G of size m ~ r -21k 1 saturating the vertices v ,v, ... ,v . 122m 

Then the graph G' obtained by adding a vertex u to G~M and joining it 

to the vertices v
1
,v

2
' ... ,v2m is k-edge-connected. 

Proof: Suppose K' (G / ) = t < k and let E1 be a t-edge cut of G' and let 

E denote those elements of E that are incident to u. Note that E * 
2 1 2 

</> since G is k-edge-connected. Let X denote the set of M-saturated 

vertices of G that are, in G', incident to E2 and M' denote the set of 

edges of M incident to exactly one vertex in X. The set 

is an edge cut in G. But 

E' = (E ~E ) U M' 
1 2 

contradicting the fact that K' (G) ~ k. This proves the lemma. o 

1 Application of Lemma 3.2 to the graphs G(m,r) for odd m = 2n + 2"r 

1 
or 2n + 2"r+l establishes the r-edge-connectedness of these graphs. It 



thus follows from Lemma 2.2 that def(G(m,r)) = 1. 

We make use of the following lemma proved in [7] to establish our 

main result in this section. 

Lemma 3.3: For odd n, ~I (n,r,l) * ¢ 

5 

if and only if r is even and 

n :!:: "2r . D 

Now we are ready to determine D(n,r,r-2). 

Theorem 3.1: For r :!:: 4, 

(a) D(n,r,r-2) = ¢, if n and rare odd or n < 2r or 

n < is odd; 

(b) D(n,r,r-2) {d 0 d :5 2 L 
n 

J d is even} , :5 , 
2 2(r + r-1) 

if n :!:: 2r is even; 

(c) D(n,r,r-2) {l} if n is odd and 5 
"2 

::$ n < 3(r 2 
+ r-l) 

(d) D(n,r,r-2) {d d 1 + 2 n 1 J :5 :5 
"2 

, 
2 2(r + r-1) 

d is odd} , otherwise. 

Proof: When ~I (n,r,r-2) * ¢, then at least one of n or r is even, and 

by Turan's theorem n :!:: 2r. Further, by Lemma 3.3, if n is odd, then 

5 n :!:: "2r. This proves (a) . So suppose at least one of n or r is 

2 d 5' f even, n:!:: r an n:!::"2r 1 n is odd. The upper bound of def (G) , 

G E ~/(n,r,r-2), is determined in Corollary 1. 

First we consider the case when n is even. The graph 

A(n,r) E ~I (n,r,r-2) and has a perfect matching. This gives the lower 

bound of def(G) and proves (b) when n < 2(r2 
+ r-1). Now let 
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and d be an even integer, L--n--
2Cr2 + r-l) 

J . 

We construct a graph G E §' (n,r,r-2) with def(G) = d for each possible 

value of d as follows. 

1 
Let t = Zrd and 

1 
s = Zrd - d . Take the empty graph Ks wi th 

vertices u
1
,u2"" ,us' t-l copies Gi ,G2,··· ,Ge-1 of BC2r+l,r) and a 

copy Gt of BCn-d(r2+r-l)+2r+l r). Note that n - d(r2 + r-l) + 2r+l is 

odd and is at least 2r+l because of the upper bound on d. Further. for 

1 
1 sis t, Gi has two vertices, xi and Yi say, of degree L Zr J + 1 and 

r ~r 1 + 1 respectively. Then join each xi and u
j 

and each Yi to uz ' 

where i s j s i + L ~r J - 1 < z s r-2. The resulting graph G is 

triangle free, r-regular and has 

v(G) (t-l)(2r+l) + (n-d(r2 + r-l) + 2r+l) + s 

(~rd-l)(2r+1) + (n-d(r2 + r-l) + 2r+l) + (~rd-d) 

n . 

We will now show that G is (r-2)-edge-connected. Suppose that 

K'(G) = t < r-2, then there is t-edge cut, (Vi,V
t

) say, of G. Lemma 

3.1 implies that for each i, Gi-{xi'Yi} is (r-2)-edge-connected, and 

hence the vertices of G.-{x. ,y.} are all in V or all in V . 
1 1 1 1 1 

Let Vi = V
1 

('\ {u
1
,u

2
""'u

S
} and V2 = V

1 
('\ {u

1
,u2, ... ,u

S
} We 

first prove that Vi * ¢, i = 1,2. Without loss of generality suppose 

that V
1 

= ¢ 

some i. Since t < r-2 and the vertices of Gi-{xi,y
i

} are all in V
1 

or 

all in V
1

, then V
l 

contains exactly one of xi or Yi . But each of these 

possibilities results in t ~ r-2. Thus Vi * ¢, i = 1,2. 

Since, for each i, G
i 

is ~r-edge-COnnected, then there cannot be 

more than one G. for which V(G.) ('\ Vi * ¢ and V(G.) ('\ V * ¢. We now 
1 1 1 1 

define a graph G' as follows. If there exists a G
i 

with V(G
i

) ('\ Vi * ¢ 



G' = G -
i+d-l 

U 
j=i 

V(G .) 
J 

where the integers are reduced modulo e when necessary. If there is no 

such G
i

, then take 

d 
G' G - U V(G.) 

j=1 J 

Then there exists an edge-cut set (V, V) of G' wi th less than r-2 
2 2 

edges. If we contract every G i in G' to a single vertex, then the 

resulting graph G* is isomorphic to the graph A(2s,r-2). Further there 

is an edge-cut set (V ,V) of G* with I (V ,V ) I 
3 3 3 3 

< r-2. This 

contradicts the fact that A(2s,r-2) is (r-2)-edge-connected. Hence 

G E §'(n,r,r-2). 

Now take S 

o (G-S) - I S I e - s 

1 1 
2 rd (2rd + d) 

d, 

and so def(G) ~ d. Further, every component G
i 

of G-S has def(G
i

) = 1, 

and hence def (G) ::s d. Thus def(G) = d and this completes the proof 

of (b). 

Now consider the case when n is odd. The graph G(n,r) E 

§" (n,r,r-2) and has deficiency one. This gives the lower bound of 

def(G) and proves (c). Let For each odd d, 

n - ~ J 
2(r2 + r-l) 2 ' 

we construct a graph G E §" (n, r, r-2) wi th def (G) = d following the 

procedure described for the case when n is even. This completes the 

proof. o 
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