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Abstract

We consider finite simple x-regular graphs of girth 6 with as few vertices
as possible. We construct a class S(x) of k-regular bipartite graphs of
girth 6. The graphs in S(k) are sometimes minimal, i.e. they have the
smallest number of vertices known so far among the x-regular graphs
of girth 6. In particular, the graph S(11) is an 11-regular graph on 240
vertices which has the same order as a graph due to P. K. Wong (Internat.
J. Math. Math. Sci. 9 (1986), 561-565). Moreover, for several values of
K, e.g. k = 13,19,21, S(x) gives new minimal graphs.

Furthermore, we conjecture and prove for ¢ = 2, 3,4 the existence of
another class that gives rise to 16- and 15-regular bipartite graphs of girth
6 on 504 and 462 vertices, respectively, that improves the order of the
graphs S(16) and S(15). All graphs are constructed via their adjacency
matrices using algebraic tools.

* This research was carried out within the activity of INAAM-GNSAGA and supported by the
Italian Ministry MIUR.
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1 Preliminaries

A (K, g)-cage is a k-regular finite simple graph (without loops and multiple edges) of
girth g with the least possible number of vertices.

We are interested in finding s-regular graphs of girth 6 with as few vertices as
possible. This problem is related to (k,6)-cages. The discussion on (k, 6)-cages and
minimal regular graphs of girth 6 is based on the widely known fact that classical
examples of (k, 6)-cages arise from finite projective planes via their incidence graphs

[4].

A partial plane (introduced by M. Hall in 1943 [10]) is an incidence structure
S = (X, L,]|) such that any two distinct points in X are incident with at most one
line in L. The incidence graph T'(S) has vertex set X U L, while the edges are just
the incident point-line pairs (i.e. the vertices p € X and [ € L make up an edge if
and only if one has p|l). I'(S) is bipartite and has girth at least 6.

For any prime power ¢ = p™, the incidence graph I'(PG(2,q)) of the finite De-
sarguesian projective plane PG(2,q) gives rise to a (¢ + 1,6)-cage. Hence, there are
always (k,6)-cages, for any integer x, when x — 1 is a prime power. Very little is
known when k — 1 is not a prime power. For instance, if Kk = 7, there is a unique
(7,6)-cage, usually named after O’Keefe and Wong [14], actually first discovered by
Baker [1, 2] in terms of an elliptic semiplane, i.e. a certain partial plane on 45 points
whose incidence graph is the (7,6)-cage.

A partial plane S = (X, L,|) gives rise to a (0,1)-matrix called the incidence
matriz: fix two labelings X = {po,...,p,} and L = {lo,...,ls}, and define M =
(m4;) with m;; = 1if pi|l; and m;; = 0 otherwise. The incidence matrix is unique
up to reordering of rows and columns since relabeling the points (lines) of S results
in a permutation of the rows (columns) of M.

Lemma 1.1 A (0,1)-matriz is the incidence matriz of some partial plane if and
only if it does not contain any 2 x 2 submatrixz all of whose entries are 1.

Proof. The forbidden substructure characterizing partial planes consists of two
distinct points py, p» and two distinct lines [y, [y such that for all ¢, j € {1,2} one has

- .. 11
pi|lj, whose incidence matrix is < 11 > O

Recall the definition of the adjacency matriz of a simple graph G = (V, E') without
loops: fix a labeling V' = {vy,...,v,} and define A = (a;;) with a;; = 1 if {v;,v;} €
E and a;; = 0 otherwise. The adjacency matrix is unique up to a simultaneous
reordering of rows and columus since relabeling the vertices results in a permutation
of the rows and columns of A. Obviously, A is symmetric and has entries 0 in its
main diagonal.

The following remark is given as an exercise in several Graph Theory text books
e.g. [4, p.11] and [6, p. §].

Remark 1.2 Let I be an incidence matriz of a partial plane S = (X, L,|) and A
be the adjacency matriz of the incidence graph T'(S), both defined with respect to the
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same labeling for the elements in X and L. Then, we have

O I
A = <It O>7

where O is a matriz all of whose entries are 0 and It is the transpose of I. The graph
whose adjacency matriz is A is bipartite.

We define a (0, 1)-matrix to be Cy-free if it satisfies the hypothesis of Remark 1.2.
This name is motivated by the fact that the forbidden substructure characterizing a
partial plane (introduced in the Proof of Lemma 1.1) would appear as a 4-cycle in
the incidence graph of such a partial plane.

2 Correspondence between (0,1)-Blocks and elements of an
abelian group ¢

Large (0, 1)-matrices are difficult to handle, in particular when checking whether they
are Cy-free. In favorable situations, however, the (0, 1)-matrix M under consideration
reveals an appropriate block matrix structure with square blocks. Let (G,+) be an
abelian group of order r. Our approach consists in constructing a 1—1 correspondence
between square (0, 1)-blocks of M and elements of G in such a way that checking
whether M is Cy-free can be translated into inspecting algebraic equations with
coefficients in G.

In (G,4),let G ={z1 =0, 2,...,2} be a fixed labeling. Define the matrix 7(G)
as an addition table for (G, +) given by

T(G)iji=z+z, fori,j=1,...,r.

(similarly to [12, p.30]). For short, we will write 7;; instead of 7(G);; when it is
clear what the group @ is.

Definition 2.1 Let z € G. We define the (0,1)-matriz P, of order r with
1 ij =2
(P2)ij = { f7(9):

0 otherwise.

Since the element z appears in each row and column of the addition table (7(G); ;)
precisely once, P, is a permutation matriz of order r.

Definition 2.2 Let B = (b;;) be an s x t matriz whose entries are elements of G.
We define the blow up B of B through the group (G,+) in the following way:
B is the s x t block matriz having square blocks B, of order r such that for all
t=1,...,sand j=1,...,t we have

Bij =P, if and only if bij=z.

Hence, B is a (0,1)-matriz with rs rows and rt columns.
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Proposition 2.3 (Criterion 1) The (0,1)-matriz B is Cy-free if and only if for each
2 x 2 submatriz S of B, say

S = (3 i), (a,b,c,d € G),

we have
a—b+c—d#0.

Proof. To prove sufficiency, assume that B has an ordinary submatrix of order 2
all of whose entries are 1. Clearly, these four entries occur in four distinct blocks of
B. Since the entries lie two by two in the same row and the same column, we find
entries 1 in positions

(Zv.]) in Pa7 (ka) in va (lvk) in P07 and (lv.]) in Pd7
for some 1, j, k,l € {1,...,r}. By Definition 2.1, these imply:
Zitzi=a, zita=b, utz=c, and z+2z;=d.

Subtracting the second and fourth equations from the sum of the first and third, we
obtain 0 =a — b+ ¢ — d, a contradiction.

To prove necessity, suppose S = (%) is a submatrix of B such that a —b+c—d =
0. Then B has a block submatrix S = (ﬁ; f;’:) . In the first row of P, and P, there
is precisely one entry 1, say in positions (P,);; and (P)1 4. In the j* column of Py
there is precisely one entry 1, say in position (Fy); ;. Thus, we have: 71 ; = a whence
T,j = 21 +2; = 0+ z; and z; = a. Analogously, 7, = b implies z; = band 7,; = d
whence 7, ; = 2+ 2; = 1+ a and z; = d — a. Therefore, 7, = 21 +2, =d—a+b=c
implies (P.);; = 1. Thus, there is a 2 x 2 submatrix of S all of whose entries are 1.

Hence B is not Cy-free. O

Note that, if we put B = 7(G) then blowing up B through (G, +) results in a non
Cy-free matrix. In the remainder of this section we construct two types of Cy-free
matrices using finite fields.

Let ¢ = p™ be a prime power and (GF(q), +, -) be the finite field of order ¢q. Denote
by GF(q)* := (GF(q) — {0},+) the multiplicative group of the non-zero elements of
GF(q). This group is well known to be cyclic [5, Ch.XIII, sec. 8]. Therefore, a finite
field is made up of two abelian groups, namely the elementary abelian additive group
GF(q)t == (GF(q),+) and the cyclic multiplicative group (GF(q)*,-). We define
B, := 7(GF(q)*) and B; := 7(GF(q)*"), with blank entries substituting the zero
entries.

Remark 2.4 Since the groups GF(q)"™ and GF(q)* have almost the same set of
elements, we will blow up matrices with elements in one group through the other
group. We will only encounter the problem that the element 0 € GF(q)t cannot be
blown up through GF(q)*, since 0 ¢ GF(q)*. In this case, we substitute the 0 entry
of GF(q)* by a blank entry and in the blow up the blank entry is substituted by a
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block all of whose entries are zero. Since a block all of whose entries are zero cannot
contribute to a 2 x 2 submatriz all of whose entries are 1, Criterion 1 still holds if
we admit blank entries in the matriz B.

Example 2.5 Let GF(4) be the finite field of order 4 given by the extension
GF(2)(z), where z is a root of the irreducible polynomial X? + X + 1 over GF(2).
Here x +1 = 22, and we write 2* =T for short. Hence, GF(4) = {0,1,2,%}. Then
B, and By are the following:

_ 1 =z
Lww 1 T T
B,=| z 7 1 B, = _
_ T T 1
T 1 x _
T z 1

The permutation matrices of Definition 2.1 coming from B, are

100 010 001
P*:(001) P*:(loo) i:(mo)
E 010 z 001 z 100/’

while the permutation matrices of Definition 2.1 coming from By are

c_(1888) o (383) pe o (B8
Pr= 0001 Pl = 1000 Pf: 01
0010 0100 10

Note Since GF(q)* is multiplicative, verifying Criterion 1 for a blow up through
GF(q)* is equivalent to checking that a-b7! - c-d=t #£ 1.

Proposition 2.6
(i) The blow up B, of B, through G, = GF(q)* is Cy-free.
(ii) The blow up B, of B, through Gy = GF(q)* is Cy-free.

Proof. (i) Consider an arbitrary 2 x 2 submatrix Sy = (&7 5% ) of B,. Note that
Sy comes from the multiplication table of 7(GF(g)*), hence there exist elements
T, 11, Y5, Yx € GF(q)* with z; # x; and y; # yx such that

Oij = &i " Yjs Oik = Li Yk, O15 = X1 Y55 Otk = L1~ Yk -
Thus
Oij = Oik + 01k — 01 =TiYj — T Y+ T yp — Y5 = (v — 1) - (y; — yr) # 0.

Hence, by Criterion 1 B, is Cy-free.

(ii) Note that, GF(q)* is multiplicative, hence Criterion 1 becomes a-b™*-c-d~! #
1. To apply this criterion consider an arbitrary 2 x 2 submatrix S» = (o7 oy ) of B.
If one or two entries of .S, are blank we are through. Otherwise, note that .S, comes
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from the addition table 7(GF(g)*1), thus there exist elements z;, 2, y;, yx € GF(q)
with x; # x; and y; # vy, such that

Cij =Ti+Yj, Ok =Ti+ Yk, Otj =21+ Yj, Ok =T+ Yg -
Hence

ool g gl Tl + Ty + 1Y + YUk
Tk SO T T i+ Y5 + Tk + YUk

if and only if
Tk + Ty F Ty + T -
This, in turn, holds true if and only if

(s —2)(y; —yw) #0.

Hence, by Criterion 1 B, is Oy-free. a

3 The Class S(k)

We construct two classes of (¢ — A)-regular bipartite graphs of girth 6, G.(¢, A) and
G+(g,A), from which we build the class S(x) of x-regular bipartite graphs of girth
6, for each integer k > 2 and Kk = ¢ — A\, where ¢ = p™ is a prime power, ¢ > 4, and
0< A< qg—3.

To this purpose, we define two variations of B, and By;

having orders ¢ and g + 1, respectively.
Lemma 3.1

(i) The blow up B.(q,0) of B.(q,0) through G, = GF(q)* is Cy-free matriz of
order ¢2.

(ii) The blow up B1(q,0) of By(q,0) through Go = GF(q)* is Cy-free matriz of
order ¢® — 1.
Proof. The orders follow from Definition 2.2.

(1) It is enough to prove that B,(q,0) satisfies Criterion 1. For entries coming
from the submatrix B, the statement follows from the proof of Proposition 2.6(i).
Thus, the only remaining 2 x 2 submatrices to be examined are of types

(60) - (50) = (3s)
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for some a,b,d € GF(q)*. Since a,b and a,d appear in the same row and the
same column of a multiplication table 7(GF(q)*), respectively, they cannot be equal.
Hence, a # 0, a — b # 0 and a — d # 0, i.e. Criterion 1 is satisfied and B,(g,0) is
Cy-free.

(ii) Analogously to (i) but with Criterion 1 applied multiplicatively as in Propo-
sition 2.6(ii). O

Definition 3.2 We define

w005 (g g )0 T = (g0 TEY),

where A,(g,0) and AL (q,0) are the (0,1)-matrices obtained as the blow up of A,(q,0)
and A, (q,0) through GF(q)t and GF(q)*, respectively. In both cases O is a matriz
all of whose entries are 0, but in the first case it is of order ¢* and in the second
it is of order ¢* — 1. Therefore, A,(g,0) and Ay(q,0) have order 2¢* and 2(q* — 1)
respectively.

Theorem 3.3

(i) The (0,1)-matrices B.(q,0) and By(q,0) are incidence matrices of partial
planes.

(ii) The (0,1)-matrices A,(q,0) and Ay(q,0) are adjacency matrices of q-regular
bipartite graphs of girth 6, with the exception of A,(2,0) which is an 8-cycle
Cs.

Proof. (i) The order of the (0,1)-matrix B,(g,0) is ¢> from Lemma 3.1, in each
row and each column there are ¢ entries 1 and, by Lemma 3.1, it is C4-free. From
Lemma 1.1, B,(g,0) is an incidence matrix for a partial plane with ¢* points and
lines such that each point and each line is incident with ¢ distinct lines and points,
respectively.

Similarly, B_+(q7 0) is an incidence matrix for a partial plane with ¢* — 1 points
and lines such that each point and each line is incident with ¢ distinct lines and
points, respectively.

(ii) From Remark 1.2, the (0, 1)-matrices A,(g,0) and A, (g,0) are adjacency ma-
trices of g-regular bipartite graphs. Then, the graph with adjacency matrix A,(q,0)
has 2¢? vertices while the graph with adjacency matrix A, (g,0) has 2(q>—1) vertices.
The matrices are Cy-free, from Lemma 3.1, thus, the girth of these graphs is at least
6. A k-regular graph of girth 8 must have at least 1+k+k(k—1)+k(k—1)4+(k—1)3 =
2(k3 — 2k* + 2k) vertices, see [4, Ch 23, p.180]. Since the number of vertices of the
graphs that we have constructed is strictly less than this bound, except for A,(2,0)
which gives an 8-cycle Cyg, they must have girth 6. O

Theorem 3.3(ii) allows us to define G.(q,0) and G(q,0) as the g-regular bipar-
tite graphs of girth 6 having adjacency matrices A.(g,0) and A, (g, 0), respectively.
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Example 3.4 Let GF(4) be the finite field of order 4. Then, we have

T
). om0 = (57)
1111

lz
B.(4,0) = (%z

o8 =8|
cocoo

lzzl
1lzz0 1 zz1l
zT 10 zz 11
P35
A*(470) T 1zT0 ’ A+(470) - zT1
zT 10 Tzl
T1lz0 11
0000 1 1
11

The adjacency matrices of the graphs G.(4,0) and G4(4,
ing up A.(4,0) and A4(4,0) through GF(4)* and GF(4)
permutation matrices from Ezample 2.5.

They are 4-regular bipartite graphs with girth 6, the former with 32 vertices and
the latter with 30 vertices. Note that, they both have order greater than the (4, 6)-cage,
namely I'(PG(2,3)) on 26 vertices.

CONSTRUCTION. We construct two classes G4(g, A\) and G4(g,A) from the graphs
G.(g,0) and G4 (q,0) as follows.

(1) Let B.(g,A) and By(g,\), for A =0,...,¢q — 3, be the principal minors obtained
by deleting the last A rows and columns from B, (g,0) and B.(g,0).

The corresponding blow up B, (g, \) and By (g, ) could be equivalently obtained
by deleting the last A rows and columns of blocks from B,(q,0) and B, (g,0).

(ii) Similarly to Definition 3.2, we define A.(q,\) := (B*(q M B*(q’A)), Ai(g,N),
A_*(q7 )‘) and A_+(q7 )\)

Note that, A,(g,\) and A (g, \) are adjacency matrices of graphs since they are
symmetric and the main diagonal has all entries zero.

Definition 3.5 We define G.(q,\) the class of graphs having adjacency matriz
Ag,\) and G4(q,\) the class of graphs with adjacency matriz A (g, \), for A =
0,...,9 — 3.

Theorem 3.6 The graphs of the classes Gi(q,\) and G4+(gq,\) are (¢ — \)-regular
bipartite of girth 6, forq >4 and A=0,1,...,q — 3.

Proof. A simple counting of the number of entries 1 in each row and column of
A,(g,\) and A (g, \) proves that the corresponding graphs are (¢ — \)-regular. They
are bipartite, by Remark 1.2.

For ¢ > 4, fix a labeling for the elements of GF(q) as follows:

GF(g)={x1=0,220=123=2,24 =y,... , 2}

Then, the principal minor of order 3 in B (g, ) is M := (1 141 111) .
z 1tz 2+t
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In the blow up B (q,\) of B.(q,\) through GF(q)*, M becomes

_ o P P}

M = (Pf Pf+1 Pf+ac> .
Py Plye Poya

In characteristic two 1+ 1 = +a = 0, thus Py, = P;,, = O in M.

Let 4, j, k, I be indices such that z; = 1+, 2; = 22, ', 2, = 1-z]71 and 2, = (14z)-2; .

Then, 2 = (1+x)-z-(1+2)" =z Thus, ()11 = (P, )in = (By)ij = (P )k =

(Pl )ky = (Py)1; = 1. Hence, there is a hexagon in A4 (g, ).

1z y
Similarly, the principal minor of order 3 in B, (g, ) is M’ = (z x? 162y> .
Yoy y

In the blow up B, (g, \) of B,(g,\) through GF(q)*, M’ becomes

, pt Pt opf
Evi + pt p+
M = | B Ph Py ),

Py PE, Ph

Let ¢, 7, %k, be indices such that z; = v-y—z,2z; = y—2;, 2, = v —z;and 2, = -y — 2.

Then, zy =2 -y—x+y — (v-y) + @ =y. Therefore, (P})13 = (P;y)zs = (P;)” =

(P = (PL, )k = (P})1; = 1, which produces a hexagon in A,(g, A). O

Remark 3.7 (i) The number of vertices of a graph in the class G.(q, \) is 2q(q —
A) = 2(¢®> — \q), while the number of vertices of a graph in the class G.(g,\) is
20g+1-N(g—1)=2(¢? = A\g+ A —1).

(ii) For \ = 0, the number of vertices of a graph in the class G1(gq,0) is strictly
smaller than the number of vertices of G.(g,0). For A = 1, they have the same
number of vertices and we conjecture that they are isomorphic. For X > 2, the number
of vertices of G.(q,0) is strictly smaller than the number of vertices of G(q,0).

Definition 3.8 Let k be a positive integer and let g = p™, m > 1 and q > 4, be the
closest prime power greater or equal to k. Let A= q—k, A > 0. We define the class
S(k) of k-regular bipartite graphs of girth 6 as follows

_[GiaN if A<
8() —{ GulaN) if A>2

Remark 3.9 (i) The two classes G(q,\) and G.(q,\) are defined for A = 0,...,
q — 3. Thus, the class S(k) is well defined since it is easy to check that A < |¢q/2| <
q—3.

(i1) The graphs in S(k) are sometimes minimal in the sense that they have the
smallest number of vertices known so far among the k-regular graphs of girth 6. In
particular, the graph S(11) is an 11-regular graph on 240 vertices which has the same
order of a graph due to Wong [17], while e.g. S(13) yields a new 13-regular graph of
girth 6 on 336 vertices.
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(iit) The graphs in S(k) such that k — 1 is not a prime power, 14 < k < 40 are
listed in the following table:

K graph  order K graph  order
15 G4(16,1) 480 29 G4(29,0) 1680
16 G4+(16,0) 510 31 G.(31,0) 1920
19 G4(19,0) 720 34 G.(37,3) 2516
21 G.(23,2) 966 35 G.(37,2) 2590
22 G4(23,1) 1012 36 G(37,1) 2664
23 G4(23,0) 1056 37 G4(37,0) 2736
25 G4(25,0) 1248 39 G.(41,2) 3198
27 G4(27,0) 1456 40 G.(41,1) 3280

Note that they are candidates to be (k,6)-cages as described in the table by G. Royle

[15]. We consider only those values of k where k — 1 is not a prime power since
the incidence graph of the projective plane PG(2,k — 1) is already known to be a
(k,6)-cage (cf. Section 1).

4 The Class S(¢% \)

In this section, we construct a 15- and a 16-regular graph of girth 6 with less vertices
than S(15) and S(16), respectively. We conjecture that this construction can be
extended for all prime powers k = ¢*> = p*™, p prime and m > 1.

For each r > 3, a subset A = {z,...,24-1} C Z, is called a difference set
modulo r if the k% — k differences

6i,j =8 — 85 (I’I’IOd T')

are pairwise distinct for 4,7 =0,..., s — 1 with ¢ # j. If r = k2 — Kk + 1, then A is
called perfect [3].

i i = ey Cp i ) WS:
A circulant matrix C =< ¢y, ..., ¢, > of order r is defined as follows
Co C1 Cy ... Cp_9 Cp_1
Cr—1 Co €1 ... Cr—3 Cp2
Cr—2 Cp—1 Co .- Crg Cp-3
c=1 . ) ) )
Cy C3 Cy ... (O C1
C1 Co C3 ... Cr—1 (g
In particular, C' is a circulant (0, 1)-matrix if co, ¢y, ..., c—1 € {0,1} [7].

There is a 1-1 correspondence between circulant (0, 1)-matrices of order r and
subsets of Z, such that

C=<co. .,cp 1> Ac:={ie€e{0,...,r—1}|¢; =1}.
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Lemma 4.1 [13] Let C = < ¢y, ...,c,—1 > be a circulant (0,1)-matriz. Then C is
Cy-free if and only if A¢ is a difference set modulo r.

Instances of perfect difference sets are {0,1,3} modulo 7 and {0,1,4,6} modulo
13, which represent incidence matrices for PG(2,2) and PG(2,3), respectively. We
give a generalization of Definition 2.2 using difference sets as entries of a matrix in
analogy to [9].

Definition 4.2 Fiz a labeling of Z, = {0,1,...,r—1}. Let A = {z0,...,24-1} be a
difference set modulo v and let B") = (b; ;)" be a square matriz of order s such that
b A if i=j
W\ 2€Zy if iAj
for a_ll i,j=1,...,8, where A is considered as a symbol. We deﬁne the Delta-blow
up B of B through the group (Z,,+) in the following way: B is the block matric

of order s having square blocks B;; of order r such that for all 3,5 = 1,...,s, we
have
B = P, if bi,]':ZEZT
I Po+...+P,, if biy=A

Hence, B is a (0,1)-matriz of order rs.

Remark 4.3 (i) The exponent (1) of the matriz B") in the above definition under-
lines that the operations are in Z,.

(ii) In the A-blow up B of B, the (0,1)-block P,y + -+ + P,,_,
matriz associated to the difference set A in the bijection above.

(ii) Criterion 1 still holds true for B") as has been proved in [9, Theorem 5.5].

s the circulant

Each finite Desarguesian projective plane PG(2, ¢*) can be partitioned into copies
of Baer subplanes PG(2,q), for details see e.g. [11]. By a famous result due to J.
Singer [16], any finite projective plane PG(2,q) admits a circulant (0,1)-matriz C(q)
as its incidence matriz, such that

Acg ={i€{0,...,¢—1}|e; =1}
is a perfect difference set.

4 2

¢ +q+1 9 ..
Let r :=¢>* + ¢+ 1 and 0(q) ;= ==——— = ¢* — ¢+ 1. Then, the incidence
7 +q (q) e i

matrix of PG(2,¢?) can be written as a (0, 1)-block matrix (Ii(:;z))i,jzl,___,g(q) such that
the blocks Ii(f) in the main diagonal are copies of C(q) and the blocks Ii(f];) i # 7,
off the main diagonal are permutation matrices of order r.

Conjecture 4.4 There exist elements z;; € Z,, for i,j = 1,...,0(q), i # j such
that the A-blow up I(q*,0) of
Ac(q) 21,2 N Zl,9(q)
I(qZ,O) — ’;52,1 'AC(Q) "ZZﬁ(Q)

2ol @2 --- Dol
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through the group (Z,,+) is an incidence matriz of PG(2,q) of the form

(1532))1-,]-:1,___,9(,1) and z;; must be such that the matriz 1(q*,\) satisfies Criterion 1.

Remark 4.5 The values for which the conjecture is true allow to construct a new
family of graphs S(q?,\), for A = 0,...,0(q) — 1, analogously to the construction
made in the Section 3. The graphs G'(¢%, ) in S(¢?, \) have adjacency matriz

where 1(q*,\) is the matriz obtained from I1(q*,0) deleting the last \ rows and
columns of blocks (i.e. it is the principal minor of order v(6(q) — X\)). Note that,
the graph G'(¢%,0) is the incidence graph T(PG(2,q?)), thus it is (¢* + 1)-regular
bipartite of girth 6 with 2(q* 4 ¢* + 1) vertices [8]. Hence, the graphs G'(¢*,\) are
(¢® + 1 — X\)-regular bipartite with 2[¢* + ¢* + 1 — X\(¢® + ¢+ 1)]. The girth of these
graphs is 6 since, for A =0,...,0(q) — 1, their adjacency matriz is still Cy-free and,
they always contain as a subgraph the incidence graph I'(PG(2,q)) which contains a
hezxagon.

Example 4.6 The conjecture holds true for q = 2,3,4. In particular, for ¢ = 4,
PG(2,4) admits a circulant incidence matriz C(4) such that Acy = {0,1,4, 14,16}
modulo 21 is a perfect different set. The matriz 1(16,0) =

Acy 3 20 6 12 17 5 5 17 12 6 20 3 (21)
3 Agw 3 20 6 1217 5 5 17 12 6 20
20 3 Agay 3 20 6 1217 5 5 17 12 6
6 20 3 Agwy 3 20 6 12 17 5 5 17 12

12 6 20 3 Acgw 3 20 6 12 17 5 5 17
17 12 6 20 3 Acu 3 20 6 12 17 5 5
5 17 12 6 20 3 Acgu 3 20 6 12 17 5
5 5 17 12 6 20 3 Agw 3 20 6 12 17
17 5 5 17 12 6 20 3 Acgu 3 20 6 12
12 17 5 5 17 12 6 20 3 Acgw 3 20 6

6 12 17 5 5 17 12 6 20 3 Ac(4) 3 20
20 6 12 17 5 5 17 12 6 20 3 Ac(4) 3
3 20 6 12 17 5 5 17 12 6 20 3 AC(4)

gives rise to the incidence matriz 1(16,0) of PG(2,16). Thus, the incidence graph
['(PG(2,16)) has adjacency matriz J(16,0) (c.f. Remark 4.5).

The graph G'(16,0) is 17-regular bipartite graphs of girth 6 having 546 vertices,
i.e. it is the (17,6)-cage. The graphs G'(16,1) and G'(16,2) in S(16,)) are a 16-
and a 15-regular bipartite graph of girth 6 of order 504 and 462, respectively. In both
cases, G'(16,1) and G'(16,2) have smaller order than the graphs S(16) and S(15),
respectively.
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5 Conclusion

The table below indicates an update state of knowledge on (minimal) x-regular
graphs of girth 6, for 3 < k < 16 analogously to G. Royle [15]. For each valency,
we have listed x-regular graphs of girth 6 indicating the corresponding graph or the
references where such graphs can be found. The graphs which are also (k,6)-cages

have the order preceded by an “=" sign.
k order graph k£ order graph
3 =14 T(PG(2,2)) 10 =182 T(PG(2,9))
4 =26 [(PG(2,3)) 11 240 [17], G(11,0)
5 =21 I'(PG(2,4)) 12 =264 I'(PG(2,11))
6 =62 I'(PG(2,5)) 13 336 G(13,0)
7T =90 [1, 2, 14] 14 =366 T'(PG(2,13))
8 =114 T(PG(2,7)) 15 462 G'(16,2)
9 =146 T(PG(2,8)) 16 504 G’(16,1)

The two classes S(x) and S(q¢?, \) give new instances for the above table indicated
in bold face. Furthermore, for x > 17 the class S(x) furnishes many more new
instances.
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