On (minimal) regular graphs of girth 6

M. Abreu* M. Funk*

Dipartimento di Matematica, Università della Basilicata
Viale dell'Ateneo Lucano, 85100 Potenza
Italy
abreu@unibas.it funk@unibas.it

D LABBATE*

Dipartimento di Matematica, Politecnico di Bari Via E. Orabona, 4, 70125 Bari Italy labbate@poliba.it

V. Napolitano*

Dipartimento di Matematica, Università della Basilicata Viale dell'Ateneo Lucano, 85100 Potenza Italy vnapolitano@unibas.it

Abstract

We consider finite simple κ -regular graphs of girth 6 with as few vertices as possible. We construct a class $S(\kappa)$ of κ -regular bipartite graphs of girth 6. The graphs in $S(\kappa)$ are sometimes minimal, i.e. they have the smallest number of vertices known so far among the κ -regular graphs of girth 6. In particular, the graph S(11) is an 11-regular graph on 240 vertices which has the same order as a graph due to P. K. Wong (Internat. J. Math. Math. Sci. 9 (1986), 561–565). Moreover, for several values of κ , e.g. $\kappa = 13, 19, 21, S(\kappa)$ gives new minimal graphs.

Furthermore, we conjecture and prove for q=2,3,4 the existence of another class that gives rise to 16- and 15-regular bipartite graphs of girth 6 on 504 and 462 vertices, respectively, that improves the order of the graphs S(16) and S(15). All graphs are constructed via their adjacency matrices using algebraic tools.

 $^{^{\}ast}$ This research was carried out within the activity of INdAM-GNSAGA and supported by the Italian Ministry MIUR.

1 Preliminaries

A (κ, g) -cage is a κ -regular finite simple graph (without loops and multiple edges) of girth g with the least possible number of vertices.

We are interested in finding κ -regular graphs of girth 6 with as few vertices as possible. This problem is related to $(\kappa, 6)$ -cages. The discussion on $(\kappa, 6)$ -cages and minimal regular graphs of girth 6 is based on the widely known fact that classical examples of $(\kappa, 6)$ -cages arise from finite projective planes via their *incidence graphs* [4].

A partial plane (introduced by M. Hall in 1943 [10]) is an incidence structure S = (X, L, |) such that any two distinct points in X are incident with at most one line in L. The incidence graph $\Gamma(S)$ has vertex set $X \cup L$, while the edges are just the incident point-line pairs (i.e. the vertices $p \in X$ and $l \in L$ make up an edge if and only if one has p|l. $\Gamma(S)$ is bipartite and has girth at least 6.

For any prime power $q = p^m$, the incidence graph $\Gamma(PG(2,q))$ of the finite Desarguesian projective plane PG(2,q) gives rise to a (q+1,6)-cage. Hence, there are always $(\kappa,6)$ -cages, for any integer κ , when $\kappa-1$ is a prime power. Very little is known when $\kappa-1$ is not a prime power. For instance, if $\kappa=7$, there is a unique (7,6)-cage, usually named after O'Keefe and Wong [14], actually first discovered by Baker [1, 2] in terms of an *elliptic semiplane*, i.e. a certain partial plane on 45 points whose incidence graph is the (7,6)-cage.

A partial plane $\mathcal{S} = (X, L, |)$ gives rise to a (0, 1)-matrix called the *incidence matrix*: fix two labelings $X = \{p_0, \dots, p_r\}$ and $L = \{l_0, \dots, l_s\}$, and define $M = (m_{i,j})$ with $m_{i,j} = 1$ if $p_i|l_j$ and $m_{i,j} = 0$ otherwise. The incidence matrix is unique up to reordering of rows and columns since relabeling the points (lines) of \mathcal{S} results in a permutation of the rows (columns) of M.

Lemma 1.1 A (0,1)-matrix is the incidence matrix of some partial plane if and only if it does not contain any 2×2 submatrix all of whose entries are 1.

Proof. The forbidden substructure characterizing partial planes consists of two distinct points p_1, p_2 and two distinct lines l_1, l_2 such that for all $i, j \in \{1, 2\}$ one has $p_i|l_j$, whose incidence matrix is $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$.

Recall the definition of the adjacency matrix of a simple graph G = (V, E) without loops: fix a labeling $V = \{v_0, \ldots, v_r\}$ and define $A = (a_{i,j})$ with $a_{i,j} = 1$ if $\{v_i, v_j\} \in E$ and $a_{i,j} = 0$ otherwise. The adjacency matrix is unique up to a simultaneous reordering of rows and columns since relabeling the vertices results in a permutation of the rows and columns of A. Obviously, A is symmetric and has entries 0 in its main diagonal.

The following remark is given as an exercise in several Graph Theory text books e.g. [4, p. 11] and [6, p. 8].

Remark 1.2 Let I be an incidence matrix of a partial plane S = (X, L, |) and A be the adjacency matrix of the incidence graph $\Gamma(S)$, both defined with respect to the

same labeling for the elements in X and L. Then, we have

$$A = \begin{pmatrix} O & I \\ I^t & O \end{pmatrix},$$

where O is a matrix all of whose entries are 0 and I^t is the transpose of I. The graph whose adjacency matrix is A is bipartite.

We define a (0, 1)-matrix to be \mathbb{C}_4 -free if it satisfies the hypothesis of Remark 1.2. This name is motivated by the fact that the forbidden substructure characterizing a partial plane (introduced in the Proof of Lemma 1.1) would appear as a 4-cycle in the incidence graph of such a partial plane.

2 Correspondence between (0,1)-Blocks and elements of an abelian group \mathcal{G}

Large (0,1)-matrices are difficult to handle, in particular when checking whether they are C_4 -free. In favorable situations, however, the (0,1)-matrix M under consideration reveals an appropriate block matrix structure with square blocks. Let $(\mathcal{G},+)$ be an abelian group of order r. Our approach consists in constructing a 1-1 correspondence between square (0,1)-blocks of M and elements of \mathcal{G} in such a way that checking whether M is C_4 -free can be translated into inspecting algebraic equations with coefficients in \mathcal{G} .

In $(\mathcal{G}, +)$, let $\mathcal{G} = \{z_1 = 0, z_2, \dots, z_r\}$ be a fixed labeling. Define the matrix $\tau(\mathcal{G})$ as an addition table for $(\mathcal{G}, +)$ given by

$$au(\mathcal{G})_{i,j} := z_i + z_j$$
, for $i, j = 1, \dots, r$.

(similarly to [12, p. 30]). For short, we will write $\tau_{i,j}$ instead of $\tau(\mathcal{G})_{i,j}$ when it is clear what the group \mathcal{G} is.

Definition 2.1 Let $z \in \mathcal{G}$. We define the (0,1)-matrix P_z of order r with

$$(P_z)_{i,j} := \begin{cases} 1 & \text{if } \tau(\mathcal{G})_{i,j} = z \\ 0 & \text{otherwise} \,. \end{cases}$$

Since the element z appears in each row and column of the addition table $(\tau(\mathcal{G})_{i,j})$ precisely once, P_z is a permutation matrix of order r.

Definition 2.2 Let $B = (b_{i,j})$ be an $s \times t$ matrix whose entries are elements of \mathcal{G} . We define the **blow up** \overline{B} of B **through the group** $(\mathcal{G}, +)$ in the following way: \overline{B} is the $s \times t$ block matrix having square blocks $\overline{B}_{i,j}$ of order r such that for all $i = 1, \ldots, s$ and $j = 1, \ldots, t$ we have

$$\overline{B}_{i,j} = P_z$$
 if and only if $b_{i,j} = z$.

Hence, \overline{B} is a (0,1)-matrix with rs rows and rt columns.

Proposition 2.3 (Criterion 1) The (0,1)-matrix \overline{B} is C_4 -free if and only if for each 2×2 submatrix S of B, say

$$S = \begin{pmatrix} a & b \\ d & c \end{pmatrix}, \quad (a, b, c, d \in \mathcal{G}),$$

we have

$$a - b + c - d \neq 0.$$

Proof. To prove sufficiency, assume that \overline{B} has an ordinary submatrix of order 2 all of whose entries are 1. Clearly, these four entries occur in four distinct blocks of \overline{B} . Since the entries lie two by two in the same row and the same column, we find entries 1 in positions

$$(i,j)$$
 in P_a , (i,k) in P_b , (l,k) in P_c , and (l,j) in P_d ,

for some $i, j, k, l \in \{1, ..., r\}$. By Definition 2.1, these imply:

$$z_i + z_j = a$$
, $z_i + z_k = b$, $z_l + z_k = c$, and $z_l + z_j = d$.

Subtracting the second and fourth equations from the sum of the first and third, we obtain 0 = a - b + c - d, a contradiction.

To prove necessity, suppose $S = \begin{pmatrix} a & b \\ d & c \end{pmatrix}$ is a submatrix of B such that a-b+c-d=0. Then \overline{B} has a block submatrix $\overline{S} = \begin{pmatrix} P_a & P_b \\ P_d & P_c \end{pmatrix}$. In the first row of P_a and P_b there is precisely one entry 1, say in positions $(P_a)_{1,j}$ and $(P_b)_{1,k}$. In the j^{th} column of P_d there is precisely one entry 1, say in position $(P_d)_{l,j}$. Thus, we have: $\tau_{1,j} = a$ whence $\tau_{1,j} = z_1 + z_j = 0 + z_j$ and $z_j = a$. Analogously, $\tau_{1,k} = b$ implies $z_k = b$ and $\tau_{l,j} = d$ whence $\tau_{l,j} = z_l + z_j = z_l + a$ and $z_l = d - a$. Therefore, $\tau_{l,k} = z_l + z_k = d - a + b = c$ implies $(P_c)_{l,k} = 1$. Thus, there is a 2×2 submatrix of \overline{S} all of whose entries are 1. Hence \overline{B} is not C_4 -free.

Note that, if we put $B = \tau(\mathcal{G})$ then blowing up B through $(\mathcal{G}, +)$ results in a non C_4 -free matrix. In the remainder of this section we construct two types of C_4 -free matrices using finite fields.

Let $q=p^m$ be a prime power and $(GF(q),+,\cdot)$ be the finite field of order q. Denote by $GF(q)^*:=(GF(q)-\{0\},\cdot)$ the multiplicative group of the non-zero elements of GF(q). This group is well known to be cyclic [5, Ch.XIII, sec. 8]. Therefore, a finite field is made up of two abelian groups, namely the elementary abelian additive group $GF(q)^+:=(GF(q),+)$ and the cyclic multiplicative group $(GF(q)^*,\cdot)$. We define $B_*:=\tau(GF(q)^*)$ and $B_+:=\tau(GF(q)^+)$, with blank entries substituting the zero entries.

Remark 2.4 Since the groups $GF(q)^+$ and $GF(q)^*$ have almost the same set of elements, we will blow up matrices with elements in one group through the other group. We will only encounter the problem that the element $0 \in GF(q)^+$ cannot be blown up through $GF(q)^*$, since $0 \notin GF(q)^*$. In this case, we substitute the 0 entry of $GF(q)^+$ by a blank entry and in the blow up the blank entry is substituted by a

block all of whose entries are zero. Since a block all of whose entries are zero cannot contribute to a 2×2 submatrix all of whose entries are 1, Criterion 1 still holds if we admit blank entries in the matrix B.

Example 2.5 Let GF(4) be the finite field of order 4 given by the extension GF(2)(x), where x is a root of the irreducible polynomial $X^2 + X + 1$ over GF(2). Here $x + 1 = x^2$, and we write $x^2 = \overline{x}$ for short. Hence, $GF(4) = \{0, 1, x, \overline{x}\}$. Then B_* and B_+ are the following:

$$B_* = \begin{pmatrix} 1 & x & \overline{x} \\ x & \overline{x} & 1 \\ \overline{x} & 1 & x \end{pmatrix} \qquad B_+ = \begin{pmatrix} 1 & x & \overline{x} \\ 1 & \overline{x} & x \\ x & \overline{x} & 1 \\ \overline{x} & x & 1 \end{pmatrix}$$

The permutation matrices of Definition 2.1 coming from B_* are

$$P_1^* = \begin{pmatrix} \begin{smallmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \qquad P_x^* = \begin{pmatrix} \begin{smallmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad P_{\overline{x}}^* = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \,,$$

while the permutation matrices of Definition 2.1 coming from B_{+} are

$$P_1^+ = \begin{pmatrix} \begin{smallmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \qquad P_x^+ = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \qquad P_{\overline{x}}^+ = \begin{pmatrix} \begin{smallmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \,.$$

Note Since $GF(q)^*$ is multiplicative, verifying Criterion 1 for a blow up through $GF(q)^*$ is equivalent to checking that $a \cdot b^{-1} \cdot c \cdot d^{-1} \neq 1$.

Proposition 2.6

- (i) The blow up $\overline{B_*}$ of B_* through $\mathcal{G}_1 = GF(q)^+$ is C_4 -free.
- (ii) The blow up $\overline{B_+}$ of B_+ through $\mathcal{G}_2 = GF(q)^*$ is C_4 -free.

Proof. (i) Consider an arbitrary 2×2 submatrix $S_1 = \begin{pmatrix} \sigma_{i,j} & \sigma_{i,k} \\ \sigma_{l,j} & \sigma_{l,k} \end{pmatrix}$ of B_* . Note that S_1 comes from the multiplication table of $\tau(GF(q)^*)$, hence there exist elements $x_i, x_l, y_j, y_k \in GF(q)^*$ with $x_i \neq x_l$ and $y_j \neq y_k$ such that

$$\sigma_{i,j} = x_i \cdot y_j, \ \sigma_{i,k} = x_i \cdot y_k, \ \sigma_{l,j} = x_l \cdot y_j, \ \sigma_{l,k} = x_l \cdot y_k.$$

Thus

$$\sigma_{i,j} - \sigma_{i,k} + \sigma_{l,k} - \sigma_{l,j} = x_i \cdot y_j - x_i \cdot y_k + x_l \cdot y_k - x_l \cdot y_j = (x_i - x_l) \cdot (y_j - y_k) \neq 0.$$

Hence, by Criterion 1 $\overline{B_*}$ is C_4 -free.

(ii) Note that, $GF(q)^*$ is multiplicative, hence Criterion 1 becomes $a \cdot b^{-1} \cdot c \cdot d^{-1} \neq 1$. To apply this criterion consider an arbitrary 2×2 submatrix $S_2 = \begin{pmatrix} \sigma_{i,j} & \sigma_{i,k} \\ \sigma_{l,j} & \sigma_{l,k} \end{pmatrix}$ of B_+ . If one or two entries of S_2 are blank we are through. Otherwise, note that S_2 comes

from the addition table $\tau(GF(q)^+)$, thus there exist elements $x_i, x_l, y_j, y_k \in GF(q)$ with $x_i \neq x_l$ and $y_j \neq y_k$ such that

$$\sigma_{i,j} = x_i + y_j, \ \sigma_{i,k} = x_i + y_k, \ \sigma_{l,j} = x_l + y_j, \ \sigma_{l,k} = x_l + y_k.$$

Hence

$$\sigma_{i,j} \cdot \sigma_{i,k}^{-1} \cdot \sigma_{l,k} \cdot \sigma_{l,j}^{-1} = \frac{x_i x_l + x_i y_k + x_l y_j + y_j y_k}{x_i x_l + x_i y_i + x_l y_k + y_i y_k} \neq 1$$

if and only if

$$x_i y_k + x_l y_j \neq x_i y_j + x_l y_k$$
.

This, in turn, holds true if and only if

$$(x_i - x_l)(y_i - y_k) \neq 0.$$

Hence, by Criterion 1 $\overline{B_+}$ is C_4 -free.

3 The Class $S(\kappa)$

We construct two classes of $(q - \lambda)$ -regular bipartite graphs of girth 6, $G_*(q, \lambda)$ and $G_+(q, \lambda)$, from which we build the class $\mathbf{S}(\kappa)$ of κ -regular bipartite graphs of girth 6, for each integer $\kappa \geq 2$ and $\kappa = q - \lambda$, where $q = p^m$ is a prime power, $q \geq 4$, and $0 \leq \lambda \leq q - 3$.

To this purpose, we define two variations of B_* and B_+ ;

$$B_*(q,0) := \begin{pmatrix} & & & 0 \\ & B_* & & \vdots \\ \hline & 0 & \cdots & 0 & 0 \end{pmatrix} \qquad B_+(q,0) := \begin{pmatrix} & & & 1 \\ & B_+ & & \vdots \\ \hline & 1 & \cdots & 1 & 1 \end{pmatrix}.$$

having orders q and q + 1, respectively.

Lemma 3.1

- (i) The blow up $\overline{B_*}(q,0)$ of $B_*(q,0)$ through $\mathcal{G}_1=GF(q)^+$ is C_4 -free matrix of order q^2 .
- (ii) The blow up $\overline{B_+}(q,0)$ of $B_+(q,0)$ through $\mathcal{G}_2=GF(q)^*$ is C_4 -free matrix of order q^2-1 .

Proof. The orders follow from Definition 2.2.

(i) It is enough to prove that $B_*(q,0)$ satisfies Criterion 1. For entries coming from the submatrix B_* , the statement follows from the proof of Proposition 2.6(i). Thus, the only remaining 2×2 submatrices to be examined are of types

$$\left(\begin{array}{cc} a & 0 \\ 0 & 0 \end{array}\right) \quad , \quad \left(\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right) \quad \text{and} \quad \left(\begin{array}{cc} a & 0 \\ d & 0 \end{array}\right)$$

for some $a,b,d \in GF(q)^*$. Since a,b and a,d appear in the same row and the same column of a multiplication table $\tau(GF(q)^*)$, respectively, they cannot be equal. Hence, $a \neq 0$, $a-b \neq 0$ and $a-d \neq 0$, i.e. Criterion 1 is satisfied and $\overline{B_*}(q,0)$ is C_4 -free.

(ii) Analogously to (i) but with Criterion 1 applied multiplicatively as in Proposition 2.6(ii).

Definition 3.2 We define

$$\begin{split} A_*(q,0) &:= \begin{pmatrix} B_*(q,0)^t & \overline{A_*}(q,0) := \begin{pmatrix} O & \overline{B_*}(q,0) \\ \overline{B_*}(q,0)^t & O \end{pmatrix}, \\ A_+(q,0) &:= \begin{pmatrix} B_+(q,0)^t & \overline{A_*}(q,0) := \begin{pmatrix} O & \overline{B_+}(q,0) \\ \overline{B_+}(q,0)^t & O \end{pmatrix}, \end{split}$$

where $\overline{A_*}(q,0)$ and $\overline{A_+}(q,0)$ are the (0,1)-matrices obtained as the blow up of $A_*(q,0)$ and $A_+(q,0)$ through $GF(q)^+$ and $GF(q)^*$, respectively. In both cases O is a matrix all of whose entries are 0, but in the first case it is of order q^2 and in the second it is of order q^2-1 . Therefore, $\overline{A_*}(q,0)$ and $\overline{A_+}(q,0)$ have order $2q^2$ and $2(q^2-1)$ respectively.

Theorem 3.3

- (i) The (0,1)-matrices $\overline{B_*}(q,0)$ and $\overline{B_+}(q,0)$ are incidence matrices of partial planes.
- (ii) The (0,1)-matrices $\overline{A_*}(q,0)$ and $\overline{A_+}(q,0)$ are adjacency matrices of q-regular bipartite graphs of girth 6, with the exception of $\overline{A_*}(2,0)$ which is an 8-cycle C_8 .
- **Proof.** (i) The order of the (0,1)-matrix $\overline{B_*}(q,0)$ is q^2 from Lemma 3.1, in each row and each column there are q entries 1 and, by Lemma 3.1, it is C_4 -free. From Lemma 1.1, $\overline{B_*}(q,0)$ is an incidence matrix for a partial plane with q^2 points and lines such that each point and each line is incident with q distinct lines and points, respectively.

Similarly, $\overline{B_+}(q,0)$ is an incidence matrix for a partial plane with q^2-1 points and lines such that each point and each line is incident with q distinct lines and points, respectively.

(ii) From Remark 1.2, the (0,1)-matrices $\overline{A_*}(q,0)$ and $\overline{A_+}(q,0)$ are adjacency matrices of q-regular bipartite graphs. Then, the graph with adjacency matrix $\overline{A_*}(q,0)$ has $2q^2$ vertices while the graph with adjacency matrix $\overline{A_+}(q,0)$ has $2(q^2-1)$ vertices. The matrices are C_4 -free, from Lemma 3.1, thus, the girth of these graphs is at least 6. A k-regular graph of girth 8 must have at least $1+k+k(k-1)+k(k-1)^2+(k-1)^3=2(k^3-2k^2+2k)$ vertices, see [4, Ch 23, p.180]. Since the number of vertices of the graphs that we have constructed is strictly less than this bound, except for $\overline{A_*}(2,0)$ which gives an 8-cycle C_8 , they must have girth 6.

Theorem 3.3(ii) allows us to define $G_*(\mathbf{q}, \mathbf{0})$ and $G_+(\mathbf{q}, \mathbf{0})$ as the q-regular bipartite graphs of girth 6 having adjacency matrices $\overline{A_*}(q, 0)$ and $\overline{A_+}(q, 0)$, respectively.

Example 3.4 Let GF(4) be the finite field of order 4. Then, we have

$$B_*(4,0) \ := \ \begin{pmatrix} \frac{1}{x} \frac{\overline{x}}{\overline{x}} \frac{1}{1} \\ \frac{1}{x} \frac{\overline{x}}{\overline{x}} \frac{1}{1} \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad B_+(4,0) \ := \ \begin{pmatrix} \frac{1}{x} \frac{x}{\overline{x}} \frac{\overline{x}}{1} \\ \frac{1}{x} \frac{x}{x} \frac{\overline{x}}{1} \frac{1}{1} \\ \frac{1}{x} \frac{\overline{x}}{1} \frac{1}{1} \end{pmatrix},$$

$$A_*(4,0) \ := \ \begin{pmatrix} \frac{1}{x} \frac{x}{\overline{x}} \frac{\overline{x}}{1} 0 \\ \frac{1}{x} \frac{x}{\overline{x}} \frac{\overline{x}}{1} 0 \\ \frac{1}{x} \frac{\overline{x}}{1} 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad A_+(4,0) \ := \ \begin{pmatrix} \frac{1}{x} \frac{x}{\overline{x}} \frac{\overline{x}}{1} 1 \\ \frac{1}{x} \frac{\overline{x}}{\overline{x}} \frac{1}{1} 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

The adjacency matrices of the graphs $G_*(4,0)$ and $G_+(4,0)$ are obtained by blowing up $A_*(4,0)$ and $A_+(4,0)$ through $GF(4)^+$ and $GF(4)^*$, respectively, using the permutation matrices from Example 2.5.

They are 4-regular bipartite graphs with girth 6, the former with 32 vertices and the latter with 30 vertices. Note that, they both have order greater than the (4,6)-cage, namely $\Gamma(PG(2,3))$ on 26 vertices.

Construction. We construct two classes $G_*(q,\lambda)$ and $G_+(q,\lambda)$ from the graphs $G_*(q,0)$ and $G_+(q,0)$ as follows.

(i) Let $B_*(q, \lambda)$ and $B_+(q, \lambda)$, for $\lambda = 0, \ldots, q-3$, be the *principal minors* obtained by deleting the last λ rows and columns from $B_*(q, 0)$ and $B_+(q, 0)$.

The corresponding blow up $\overline{B_*}(q,\lambda)$ and $\overline{B_+}(q,\lambda)$ could be equivalently obtained by deleting the last λ rows and columns of blocks from $\overline{B_*}(q,0)$ and $\overline{B_+}(q,0)$.

(ii) Similarly to Definition 3.2, we define $A_*(q,\lambda) := \left(\frac{B_*(q,\lambda)^t}{B_*(q,\lambda)} \right)$, $A_+(q,\lambda)$, $\overline{A_*}(q,\lambda)$ and $\overline{A_+}(q,\lambda)$.

Note that, $\overline{A_*}(q,\lambda)$ and $\overline{A_+}(q,\lambda)$ are adjacency matrices of graphs since they are symmetric and the main diagonal has all entries zero.

Definition 3.5 We define $G_*(q,\lambda)$ the class of graphs having adjacency matrix $\overline{A_*}(q,\lambda)$ and $G_+(q,\lambda)$ the class of graphs with adjacency matrix $\overline{A_+}(q,\lambda)$, for $\lambda=0,\ldots,q-3$.

Theorem 3.6 The graphs of the classes $G_*(q, \lambda)$ and $G_+(q, \lambda)$ are $(q - \lambda)$ -regular bipartite of girth 6, for $q \geq 4$ and $\lambda = 0, 1, \ldots, q - 3$.

Proof. A simple counting of the number of entries 1 in each row and column of $\overline{A_*}(q,\lambda)$ and $\overline{A_+}(q,\lambda)$ proves that the corresponding graphs are $(q-\lambda)$ -regular. They are bipartite, by Remark 1.2.

For $q \geq 4$, fix a labeling for the elements of GF(q) as follows:

$$GF(q) = \{z_1 = 0, z_2 = 1, z_3 = x, z_4 = y, \dots, z_q\}.$$

Then, the principal minor of order 3 in $B_+(q,\lambda)$ is $M:=\begin{pmatrix} 1 & 1 & x \\ 1 & 1+1 & 1+x \\ x & 1+x & x+x \end{pmatrix}$.

In the blow up $\overline{B}_+(q,\lambda)$ of $B_+(q,\lambda)$ through $GF(q)^*$, M becomes

$$\overline{M} := \begin{pmatrix} O & P_1^* & P_x^* \\ P_1^* & P_{1+1}^* & P_{1+x}^* \\ P_x^* & P_{1+x}^* & P_{x+x}^* \end{pmatrix}.$$

In characteristic two 1+1=x+x=0, thus $P_{1+1}^*=P_{x+x}^*=O$ in \overline{M} . Let i,j,k,l be indices such that $z_i=1+x,z_j=x\cdot z_i^{-1},z_k=1\cdot z_j^{-1}$ and $z_l=(1+x)\cdot z_k^{-1}$. Then, $z_l=(1+x)\cdot x\cdot (1+x)^{-1}=x$. Thus, $(P_1^*)_{1,1}=(P_{1+x}^*)_{i,1}=(P_x^*)_{i,j}=(P_1^*)_{k,j}=(P_{1+x}^*)_{k,l}=(P_x^*)_{1,l}=1$. Hence, there is a hexagon in $\overline{A_+}(q,\lambda)$.

Similarly, the principal minor of order 3 in $B_*(q, \lambda)$ is $M' := \begin{pmatrix} 1 & x & y \\ x & x^2 & x \cdot y \\ y & x \cdot y & y^2 \end{pmatrix}$.

In the blow up $\overline{B}_*(q,\lambda)$ of $B_*(q,\lambda)$ through $GF(q)^+$, M' becomes

$$\overline{M}' := \begin{pmatrix} P_1^+ & P_x^+ & P_y^+ \\ P_x^+ & P_{x-y}^+ & P_{x-y}^+ \\ P_y^+ & P_{x-y}^+ & P_{x-2}^+ \end{pmatrix}.$$

Let i, j, k, l be indices such that $z_i = x \cdot y - x, z_j = y - z_i, z_k = x - z_j$ and $z_l = x \cdot y - z_k$. Then, $z_l = x \cdot y - x + y - (x \cdot y) + x = y$. Therefore, $(P_x^+)_{1,3} = (P_{x\cdot y}^+)_{i,3} = (P_y^+)_{i,j} = (P_x^+)_{k,j} = (P_x^+)_{k,j} = (P_y^+)_{1,l} = 1$, which produces a hexagon in $\overline{A_*}(q, \lambda)$.

Remark 3.7 (i) The number of vertices of a graph in the class $G_*(q, \lambda)$ is $2q(q - \lambda) = 2(q^2 - \lambda q)$, while the number of vertices of a graph in the class $G_+(q, \lambda)$ is $2(q + 1 - \lambda)(q - 1) = 2(q^2 - \lambda q + \lambda - 1)$.

(ii) For $\lambda = 0$, the number of vertices of a graph in the class $G_+(q,0)$ is strictly smaller than the number of vertices of $G_*(q,0)$. For $\lambda = 1$, they have the same number of vertices and we conjecture that they are isomorphic. For $\lambda \geq 2$, the number of vertices of $G_*(q,0)$ is strictly smaller than the number of vertices of $G_+(q,0)$.

Definition 3.8 Let κ be a positive integer and let $q = p^m$, $m \ge 1$ and $q \ge 4$, be the closest prime power greater or equal to κ . Let $\lambda = q - \kappa$, $\lambda \ge 0$. We define the class $\mathbf{S}(\kappa)$ of κ -regular bipartite graphs of girth 6 as follows

$$S(\kappa) := \left\{ \begin{array}{ll} G_+(q,\lambda) & if \quad \lambda \leq 1 \\ G_*(q,\lambda) & if \quad \lambda \geq 2 \end{array} \right.$$

Remark 3.9 (i) The two classes $G_+(q, \lambda)$ and $G_*(q, \lambda)$ are defined for $\lambda = 0, \ldots, q-3$. Thus, the class S(k) is well defined since it is easy to check that $\lambda \leq \lfloor q/2 \rfloor \leq q-3$.

(ii) The graphs in $S(\kappa)$ are sometimes minimal in the sense that they have the smallest number of vertices known so far among the κ -regular graphs of girth 6. In particular, the graph S(11) is an 11-regular graph on 240 vertices which has the same order of a graph due to Wong [17], while e.g. S(13) yields a new 13-regular graph of girth 6 on 336 vertices.

(iii) The graphs in $S(\kappa)$ such that $\kappa-1$ is not a prime power, $14 \le \kappa \le 40$ are listed in the following table:

κ	graph	order	κ	graph	order
	$G_{+}(16,1)$	480		$G_{+}(29,0)$	1680
19	$G_{+}(16,0)$ $G_{+}(19,0)$	510 720	34	$G_{+}(31,0)$ $G_{*}(37,3)$	1920 2516
22	$G_*(23,2)$ $G_+(23,1)$	$966 \\ 1012$	36	$G_*(37,2)$ $G_+(37,1)$	$2590 \\ 2664$
	$G_{+}(23,0)$ $G_{+}(25,0)$	$1056 \\ 1248$		$G_+(37,0)$ $G_*(41,2)$	$2736 \\ 3198$
	$G_{+}(27,0)$	1456	40	$G_{+}(41,1)$	3280

Note that they are candidates to be $(\kappa, 6)$ -cages as described in the table by G. Royle [15]. We consider only those values of κ where $\kappa-1$ is not a prime power since the incidence graph of the projective plane $PG(2, \kappa-1)$ is already known to be a $(\kappa, 6)$ -cage (cf. Section 1).

4 The Class $S(q^2, \lambda)$

In this section, we construct a 15- and a 16-regular graph of girth 6 with less vertices than S(15) and S(16), respectively. We conjecture that this construction can be extended for all prime powers $\kappa = q^2 = p^{2m}$, p prime and $m \ge 1$.

For each $r \geq 3$, a subset $\Delta = \{z_0, \ldots, z_{\kappa-1}\} \subseteq \mathbb{Z}_r$ is called a **difference set** modulo r if the $\kappa^2 - \kappa$ differences

$$\delta_{i,j} :\equiv s_i - s_j \; (\bmod \, r)$$

are pairwise distinct for $i, j = 0, ..., \kappa - 1$ with $i \neq j$. If $r = \kappa^2 - \kappa + 1$, then Δ is called **perfect** [3].

A circulant matrix $C = \langle c_0, \dots, c_{r-1} \rangle$ of order r is defined as follows:

$$C = \begin{pmatrix} c_0 & c_1 & c_2 & \dots & c_{r-2} & c_{r-1} \\ c_{r-1} & c_0 & c_1 & \dots & c_{r-3} & c_{r-2} \\ c_{r-2} & c_{r-1} & c_0 & \dots & c_{r-4} & c_{r-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ c_2 & c_3 & c_4 & \dots & c_0 & c_1 \\ c_1 & c_2 & c_3 & \dots & c_{r-1} & c_0 \end{pmatrix}.$$

In particular, C is a **circulant** (0,1)-matrix if $c_0, c_1, \ldots, c_{r-1} \in \{0,1\}$ [7].

There is a 1–1 correspondence between circulant (0,1)-matrices of order r and subsets of \mathbb{Z}_r such that

$$C = \langle c_0, \dots, c_{r-1} \rangle \longmapsto \Delta_C := \{i \in \{0, \dots, r-1\} \mid c_i = 1\}.$$

Lemma 4.1 [13] Let $C = \langle c_0, \ldots, c_{r-1} \rangle$ be a circulant (0,1)-matrix. Then C is C_4 -free if and only if Δ_C is a difference set modulo r.

Instances of perfect difference sets are $\{0,1,3\}$ modulo 7 and $\{0,1,4,6\}$ modulo 13, which represent incidence matrices for PG(2,2) and PG(2,3), respectively. We give a generalization of Definition 2.2 using difference sets as entries of a matrix in analogy to [9].

Definition 4.2 Fix a labeling of $\mathbb{Z}_r = \{0, 1, \dots, r-1\}$. Let $\Delta = \{z_0, \dots, z_{\kappa-1}\}$ be a difference set modulo r and let $B^{(r)} = (b_{i,j})^{(r)}$ be a square matrix of order s such that

$$b_{i,j} \ = \ \left\{ \begin{array}{ll} \Delta & \text{if} \quad i = j \\ z \in \mathbb{Z}_r & \text{if} \quad i \neq j \end{array} \right.$$

for all i, j = 1, ..., s, where Δ is considered as a symbol. We define the **Delta-blow** up \overline{B} of B through the group $(\mathbb{Z}_r, +)$ in the following way: \overline{B} is the block matrix of order s having square blocks $\overline{B}_{i,j}$ of order r such that for all i, j = 1, ..., s, we have

$$\overline{B}_{i,j} = \begin{cases} P_z & \text{if } b_{i,j} = z \in \mathbb{Z}_r \\ P_{z_0} + \ldots + P_{z_{\kappa-1}} & \text{if } b_{i,i} = \Delta \end{cases}$$

Hence, \overline{B} is a (0,1)-matrix of order rs.

Remark 4.3 (i) The exponent (r) of the matrix $B^{(r)}$ in the above definition underlines that the operations are in \mathbb{Z}_r .

(ii) In the Δ -blow up \overline{B} of B, the (0,1)-block $P_{z_0} + \cdots + P_{z_{\kappa-1}}$ is the circulant matrix associated to the difference set Δ in the bijection above.

(iii) Criterion 1 still holds true for $B^{(r)}$ as has been proved in [9, Theorem 5.5].

Each finite Desarguesian projective plane $PG(2, q^2)$ can be partitioned into copies of Baer subplanes PG(2, q), for details see e.g. [11]. By a famous result due to J. Singer [16], any finite projective plane PG(2, q) admits a circulant (0, 1)-matrix C(q) as its incidence matrix, such that

$$\Delta_{C(q)} := \{ i \in \{0, \dots, q-1\} \mid c_i = 1 \}$$

 $is\ a\ perfect\ difference\ set.$

Let $r:=q^2+q+1$ and $\theta(q):=rac{q^4+q^2+1}{q^2+q+1}=q^2-q+1$. Then, the incidence

matrix of $PG(2,q^2)$ can be written as a (0,1)-block matrix $(I_{i,j}^{(q^2)})_{i,j=1,\dots,\theta(q)}$ such that the blocks $I_{i,i}^{(q^2)}$ in the main diagonal are copies of C(q) and the blocks $I_{i,j}^{(q^2)}$, $i \neq j$, off the main diagonal are permutation matrices of order r.

Conjecture 4.4 There exist elements $z_{i,j} \in \mathbb{Z}_r$, for $i, j = 1, \ldots, \theta(q)$, $i \neq j$ such that the Δ -blow up $\overline{I}(q^2, 0)$ of

$$I(q^2,0)$$
 :=
$$\begin{pmatrix} \Delta_{C(q)} & z_{1,2} & \dots & z_{1,\theta(q)} \\ z_{2,1} & \Delta_{C(q)} & \dots & z_{2,\theta(q)} \\ \vdots & \vdots & \ddots & \vdots \\ z_{\theta(q),1} & z_{\theta(q),2} & \dots & \Delta_{C(q)} \end{pmatrix}$$

through the group $(\mathbb{Z}_r,+)$ is an incidence matrix of $PG(2,q^2)$ of the form $(I_{i,j}^{(q^2)})_{i,j=1,\ldots,\theta(q)}$ and $z_{i,j}$ must be such that the matrix $I(q^2,\lambda)$ satisfies Criterion 1.

Remark 4.5 The values for which the conjecture is true allow to construct a new family of graphs $S(q^2, \lambda)$, for $\lambda = 0, \ldots, \theta(q) - 1$, analogously to the construction made in the Section 3. The graphs $G'(q^2, \lambda)$ in $S(q^2, \lambda)$ have adjacency matrix

$$\overline{J}(q^2,\lambda) = \begin{pmatrix} O & \overline{I}(q^2,\lambda) \\ \overline{I}(q^2,\lambda)^t & O \end{pmatrix},$$

where $\overline{I}(q^2,\lambda)$ is the matrix obtained from $\overline{I}(q^2,0)$ deleting the last λ rows and columns of blocks (i.e. it is the principal minor of order $r(\theta(q)-\lambda)$). Note that, the graph $G'(q^2,0)$ is the incidence graph $\Gamma(PG(2,q^2))$, thus it is (q^2+1) -regular bipartite of girth 6 with $2(q^4+q^2+1)$ vertices [8]. Hence, the graphs $G'(q^2,\lambda)$ are $(q^2+1-\lambda)$ -regular bipartite with $2[q^4+q^2+1-\lambda(q^2+q+1)]$. The girth of these graphs is 6 since, for $\lambda=0,\ldots,\theta(q)-1$, their adjacency matrix is still C_4 -free and, they always contain as a subgraph the incidence graph $\Gamma(PG(2,q))$ which contains a hexagon.

Example 4.6 The conjecture holds true for q = 2, 3, 4. In particular, for q = 4, PG(2,4) admits a circulant incidence matrix C(4) such that $\Delta_{C(4)} = \{0, 1, 4, 14, 16\}$ modulo 21 is a perfect different set. The matrix I(16,0) =

$$\begin{pmatrix} \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 \\ 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 \\ 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 \\ 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 \\ 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 \\ 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 \\ 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 & 5 \\ 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 \\ 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 & 5 \\ 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 & 17 \\ 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 & 12 \\ 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 & 6 \\ 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 & 20 \\ 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 \\ 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} & 3 \\ 3 & 20 & 6 & 12 & 17 & 5 & 5 & 17 & 12 & 6 & 20 & 3 & \Delta_{C(4)} \end{pmatrix}$$

gives rise to the incidence matrix $\overline{I}(16,0)$ of PG(2,16). Thus, the incidence graph $\Gamma(PG(2,16))$ has adjacency matrix $\overline{J}(16,0)$ (c.f. Remark 4.5).

The graph G'(16,0) is 17-regular bipartite graphs of girth 6 having 546 vertices, i.e. it is the (17,6)-cage. The graphs G'(16,1) and G'(16,2) in $S(16,\lambda)$ are a 16-and a 15-regular bipartite graph of girth 6 of order 504 and 462, respectively. In both cases, G'(16,1) and G'(16,2) have smaller order than the graphs S(16) and S(15), respectively.

5 Conclusion

The table below indicates an update state of knowledge on (minimal) κ -regular graphs of girth 6, for $3 \le \kappa \le 16$ analogously to G. Royle [15]. For each valency, we have listed κ -regular graphs of girth 6 indicating the corresponding graph or the references where such graphs can be found. The graphs which are also $(\kappa, 6)$ -cages have the order preceded by an "=" sign.

κ	order	graph	κ	order	graph
3	= 14	$\Gamma(PG(2,2))$	10	= 182	$\Gamma(PG(2,9))$
4	= 26	$\Gamma(PG(2,3))$	11	240	[17], $G(11, 0)$
5	=21	$\Gamma(PG(2,4))$	12	= 264	$\Gamma(PG(2,11))$
6	= 62	$\Gamma(PG(2,5))$	13	336	G(13, 0)
7	= 90	[1, 2, 14]	14	= 366	$\Gamma(PG(2,13))$
8	= 114	$\Gamma(PG(2,7))$	15	462	${f G}'({f 16},{f 2})$
9	= 146	$\Gamma(PG(2,8))$	16	504	G'(16, 1)

The two classes $S(\kappa)$ and $S(q^2, \lambda)$ give new instances for the above table indicated in bold face. Furthermore, for $\kappa \geq 17$ the class $S(\kappa)$ furnishes many more new instances.

Acknowledgement

The authors wish to thank the referees for their valuable suggestions.

References

- R. D. Baker, An Elliptic Semiplane, J. Combin. Theory, Ser. A 25 (1978), 193– 195.
- R. D. Baker, Elliptic Semi-planes I: Existence and Classification, in: Proc. 8th Conf. Combinatorics, Graph Theory and Computing, Baton Rouge 1977, Congressus Numer. 19 (1977), 61-73.
- [3] L. D. Baumert, Cyclic difference sets, Springer-Verlag, Berlin Heidelberg New York, 1971.
- [4] N. Biggs, Algebraic Graph Theory, Cambridge University Press, Cambridge, 1993.
- [5] G. Birkhoff and S. Mac Lane, Algebra (3rd edition), AMS Chelsea Publishing, Providence, 1999.
- [6] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Elsevier, North Holland, New York 1976.

- [7] P. J. Davis, Circulant matrices, Chelsea Publ., New York 1994.
- [8] P. Dembowski, Finite geometries, Springer, Berlin Heiderlberg New York 1997.
- [9] M. Funk, D. Labbate and V. Napolitano, Tactical decompositions of symmetric configurations, (submitted).
- [10] M. Hall, Projective Planes, Trans. Am. Math. Soc. 54 (1943), 229–277.
- [11] J. W. P. Hirschfeld, Projective Geometries over Finite Fields (2nd ed.), Clarendon Press, Oxford 1998.
- [12] N. Jacobson, Basic Algebra I (2nd ed.), Freeman and Co., New York 1985.
- [13] M. J. Lipman, The existence of small tactical configurations, in: *Graphs and Combinatorics*. Springer Lecture Notes in Mathematics 406 (1974), 319–324.
- [14] M. O'Keefe and P. K. Wong, The smallest graph of girth 6 and valency 7, J. Graph Theory 5 (1981), 79–85.
- [15] G. Royle, Cages of Higher Valency, http://www.csse.uwa.edu.au/~gordon/cages/allcages.html, last update Feb. 2004.
- [16] J. Singer, A Theorem in Finite Projective Geometry and Some Applications to Number Theory, *Trans. Amer. Math. Soc.* 43 (1938), 377–385.
- [17] P. K. Wong, A regular graph of girth 6 and valency 11, Internat. J. Math. Math. Sci. 9 (1986), 561–565.

(Received 25 Nov 2004)