AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 34 (2006), Pages 211-228

The tough sets for the generalized Petersen graphs
G(n,2)

KEvIN K. FERLAND MEGAN L. HOLBEN

Bloomsburg University
Bloomsburg, PA 17815
U.S.A.

Abstract

The known upper bounds for the toughness of the generalized Petersen
graphs G(n,2) are shown to be the exact values. Moreover, the tough
sets are characterized in terms of certain key sections. Specifically, for
n > 9 with 7 { n, we show that 7(G(n,2)) = fm%gig, where § = 0
ifn=1,2,or3 (mod7) and 6 = 1ifn =4,5, or 6 (mod 7). These
complement the known result that 7(G(n,2)) = 2if 7 | n (ie. § =2).

1 Basic Terminology

For each n > 3 and 0 < k < n, G(n, k) denotes the generalized Petersen graph [6]
with vertex set V = {uy,...,un} U{vy,...,v,} and edge set

E = {{ui,uir1}|1 <i<n}U{{u, v}l <i<n}U{{v, v}l <i<n}

All subscripts are taken modulo n. The graph G(5,2) is the Petersen graph. The
subgraph of G(n, k) induced by {u,us,...,u,} is called the outer rim, while that
induced by {vi,vs,...,v,} is called the inner rim. An edge of the form {u;,v;} is
called a spoke. The obvious dihedral symmetries of G(n, k) preserve setwise the inner
rim, the outer rim, and the spokes. Given a positive integer m < n, an m-section of
G(n, k) is a subgraph induced by a subset of V' of the form {u;, wit1,. .., Uitm—1} U
{vi, Vit1, .., Viym—1}, for some i. If n = ¥m;, then G(n, k) can be built from a union
of mj-sections in the obvious way. In this paper, we focus on the case in which k& = 2.
The toughness [1] of a connected non-complete graph G = (V, E) is

. |S] .
= _— C .
7(QG) mm{w(G\S) S CV, S disconnects G}, (1.1)

where w(G \ S) is the number of components of the graph obtained from G by
removing the vertices of S. A subset S C V that achieves the minimum in (1.1) is
called a tough set for G.
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2 Introduction

The toughness of generalized Petersen graphs 7(G(n,k)) was first explored in [5],
where the case in which £ = 1 is completely settled. The case in which k£ = 2 is
considered in [3], where % is shown to be the critical value. More specifically, we
define the function

'% if n =0 (mod 7),

Pt ifn=1(mod7),

e if n =2 (mod 7),

t(n) = q 255 if n =3 (mod 7),
ZZIS if n =4 (mod 7),

2t ifn =5 (mod7),

{ =2 if n =6 (mod 7),

which is shown in [3] to give upper bounds for 7(G(n,2)).

Theorem 2.1 ([3]). Forn >5 andn # 8, 2 < 7(G(n,2)) < t(n). Also, 7(G(3,2)) =
2 7(G4,2)) =1, and 7(G(8,2)) = &.

In this paper, we complete the computation of 7(G(n,2)) and show that the
upper bounds displayed in Theorem 2.1 are, in fact, the exact values. Bounds on
7(G(n, k)) for general k are explored in [2].

Our results are best understood through pictures. Essentially, we characterize
how a tough set for G(n,2) will look. Throughout this paper, sections of G(n,2) are
pictured with the outer rim at the top, and, to reduce excess clutter, relatively few
of the inner rim edges are shown. To display a tough set S, we place a circle around
each vertex in S and box off the components of G \ S. For example, what will be
shown to be a tough set for G(20,2) is displayed in Figure 1.

Figure 1: Tough Set for G(20,2).

The important observation to make about our tough sets is that they are most
naturally described in terms of certain key m-sections, shown in Figures 2 through
8. The full sections displayed are named M, through Mg, respectively, according to
their lengths modulo 7. Note in Figures 3, 4, and 6 that the portion of the section
up to the dotted line agrees with the shorter section used in [3] and is also called
a key section here. As in [3], for each key m-section, S,, denotes the number of
vertices of S it contains, and w,, denotes the number of components of G(n,2)\ S
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Figure 2: Key 7-section M, has S; =5 and w; = 4.
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Figure 3: Key 15-section M; has Si5 = 13 and w5 = 10. Left of the dotted line,
the key 8-section has Sy = 8 and wg = 6.
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Figure 4: Key 16-section M, has Sijg = 13 and wig = 10. Left of the dotted line,
the key 9-section has Sg = 8 and wg = 6.

Ty
Figure 5: Key 10-section M; has S1g = 8 and wyy = 6.
TRy

Figure 6: Key 1l-section M, has S1; =9 and w;; = 7. Left of the dotted line, the
key 4-section has S; = 4 and wy = 3.

Figure 7. Key 12-section Mj has S12 =9 and wys = 7.

Www

Figure 8: Key 6-section Mg has S¢ = 4 and wg = 3.

it contains. A critical feature of these key m-sections is that, when they are linked
together to form G(n,2), the components local to one key section do not join up with
the components local to another. Consequently, if n = )" m; and G(n,2) is built
as a union of key mj-sections, then |S| =37 Sy, and w(G(n,2) \ S) = > wn,. The
dotted lines in Figure 1 split G(20,2) into 3 sections. All but one are the 7-section
My. The remaining one, at the top of Figure 1, is Mg and is special to the congruence
class of 20 modulo 7.
The following is our main theorem.

Theorem 2.2. Forn >9, 7(G(n,2)) =t(n).

Observe that the values in Theorem 2.2 can be seen to come from building
G(n,2) in a natural way based upon the congruence class of n modulo 7. Take

r € {6,7,15,16,10,11,12} with n =7 (mod 7), and link M, meq 7 With “Z* copies of

My. We write M, mod 7M0L7r. This forms both G(n,2) and what will be shown to be
a tough set S. By adding the appropriate values S,, and wy,, it is easy to see that
the values listed for ¢(n) are obtained. Thus, it suffices to show that this method
does indeed yield a tough set.
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The proof of Theorem 2.2 is given in Section 5 after several preliminary results
are established. With the additional machinery we develop, we can also give a
characterization of all of the tough sets for G(n,2). That subject is addressed after
the proof.

3 Local Structure of Tough Sets

Before characterizing the tough sets for G(n,2), we need a detailed understanding of
their local structure. We thus make frequent use of the following easily proven rules
governing this structure.

Lemma 3.1 ([3, 4]). Let S be a tough set for a graph G.

(a) Separation Rule. If v € S, then v is adjacent to at least two com-
ponents of G\ S.

(b) Cutpoint Rule. If 7(G) > 1, then no component of G\ S has a
cutpoint.

(¢) Trade Rule. If a vertex v in S is adjacent to exactly two components
of G\ S and one of the components consists of more than one vertex but
contains exactly one neighbor u of v, then SU{u} \ {v} must also be a a
tough set for G.

Some special cases of Lemma 3.1 warrant special mention. The first follows from
the separation rule, and the second results by combining the cutpoint rule with the
trade rule.

Corollary 3.2. Let S be a tough set for a graph G.

(a) 3-in-a-row Rule. A vertex of degree 3 together with two of its neigh-
bors cannot all be in S.

(b) 2-in-a-row Rule. If 7(G) > 1, then a vertex in S of degree 3 cannot
have one neighbor in S and another neighbor whose removal leaves a
cutpoint in its component of G\ S.

Given a tough set S for G(n,2), we say that a component of G(n,2) \ S is tame
if it is contained within an m-section from some m < n. Otherwise, it is said to be
wild. Our principal result in this section is that, for n > 13, all components are
tame and there are only three isomorphism types, namely, the complete graphs K;
and K, and the 5-cycle Cs.

Lemma 3.3. Let S be a tough set for G(n,2). If a component of G(n,2)\ S is tame,
then it is one of K1, Ky, or Cs.
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Proof. Denote G(n,2) by G. Let T be a tame component of G\ S, and let M be the
smallest section of G containing 7.

First, we claim that either 7" is a K; component, T is a K, component, or the
intersections of T" with the 3-sections at the ends of M each form Cs. By reindex-
ing if necessary, we may assume that M is induced by the vertices uy, ..., u, and
Uty vy Unype
Case 1: uy €ET and vy €S. Soug € S. If uy € S, then T is K;. So suppose uy € T
The cutpoint rule at us now forces vy, uz € S. Thus, T is K.

Case 2: u; € Sandwv; € T. Sov_; € S. If v3 € S, then T is K;. So suppose vz € T

The cutpoint rule at vz now forces uz,vs € S. Thus, T is K,.

Case 3: uj,v; € T. So ug,v_1 € S. Figure 9 shows the beginning structure of 7" in

M. If either us or vy is in S, then the cutpoint rule forces T to be K,. So assume
Ui

Figure 9: Tame component.

that us,v3 € T. If uz € S, then the cutpoint rule forces v, € T, the definition of M
forces vy € S, and the 2-in-a-row rule is violated at vy. Hence, uz € T. If vy € S,
then vg € S and the 2-in-a-row rule is violated at ug. So vy € S. We thus see that, in
the 3-section at the left end of M, the intersection with T forms Cs. By symmetry,
the same must be true at the right end.

Second, having established our claim, we need only consider the case in which
m > 3 and obtain a contradiction. In this case, v4 ¢ S, since otherwise the 2-in-a-row
rule would be violated at v,. So, in fact, it must be that m > 6. Moreover, observe
that 7" must be the only component in M. This follows from our earlier claim, since
any other component in M would have to be a K; component or a K, component,
and it is straightforward to verify that any such component in M would force T to
have a cutpoint, violating the cutpoint rule.

Take 6 < r < 12 so that m = r (mod 7). Form a new m-section M’ by starting
with the key r-section, taken from Figures 2 through 8, and appending to the right
M copies of the key 7-section My. Replacing M by M’ we obtain a new discon-
necting set S’ for G. From the observation that the inner vertices second from each
end of M and M’ agree in S and S’, it follows that

15'] < |S|+<&—2>+5(m;7°)

and

w(G\s'):w(G\S)+(wT—1)+4<m7‘T>.

Since S is a tough set,

S| 191 . IS| + (S, —2) + 5 (%
w(G\S) T w(G@\S) T w(G\S)+(w - 1) 4(m £)
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From the inequality

S| [w(G\ S) + (wr = 1) +4 ()] < [IS]+ (S, = 2) +5 ()] w(G\ 9),

it follows that

SI (5 -2 +5(25)
w(G\S) = (wr—1)+4(27)

Since, in each case, ffj < %, the right-hand side of (3.1) is less than %. This

contradicts the lower bound given in Theorem 2.1. O

(3.1)

Lemma 3.4. Let S be a tough set for G(n,2). Then, G(n,2)\ S has at most one
wild component.

Proof. The result is trivial for n < 4, so assume n > 5. Each wild component must
cross over a dotted line of the form shown in Figure 10. Note that there are three

(W

Figure 10: Cutline for wild components.

edges that cross this line, but at most two of them can be from distinct components
of G(n,2)\ S. Hence, if there is more than one wild component of G(n,2) \ S, then
there must be just two wild components and these must be the only two components.
Since |S| > 3, this forces 7(G(n,2)) > 2, which is a contradiction. O

We have seen in the proof of Lemma 3.3 the need to study the local structure of a
tough set S, as in the argument surrounding Figure 9. In subsequent arguments, we
need to consider whether or not certain vertices are in S or are in some component
of G(n,2) \ S. However, at various points of these arguments, we may be unaware
of where a known portion of a component ends. If a vertex is known not to be in 5,
but the size of its component is unknown, then that vertex may be marked with the
symbol x. For example, this is used in our arguments surrounding Figure 11.

Proposition 3.5. Letn > 5 withn ¢ {6,8,12}, and let S be a tough set for G(n,2).
Each component of G(n,2)\ S is one of K1, K, or Cs.

Proof. Appendix A in [3] shows that this result holds for 5 < n < 15. So assume
n > 16, and let G = G(n,2). Since 7(G) < 3, it follows that w(G \ S) > 4. Suppose
to the contrary that G \ S has a wild component. By Lemma 3.4, there must be
exactly one wild component W. By Lemma 3.3, each of the remaining components
is K1, Ko, or C5. That the tame components can be neither Cs nor a non-spoke K,
can be easily seen by trying to depict how W crosses through the section containing
such a tame component. We first show that a tame component also cannot be a
spoke K.

Suppose to the contrary that there is a spoke K, component. Say ug, vg, € S and
U_1,U1,V_9,V3 € S. By the 3-in-a-row rule, u_s,us ¢ S. To accommodate W, we
need v_3,v_1,v1,v3 € W. The cutpoint rule for W now forces u_3,u3 € S, and hence
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Figure 11: Wild component avoids K.

we must have v_s,v5 € W. Since having us € S would violate the 2-in-a-row rule at
uz, we have uy ¢ S. Similarly we have u_4 ¢ S, and therefore we have the structure
shown in Figure 11. If uy € W, then the set S’ = S U {uo,v_5,v_1} \ {w_1,u1,us}
satisfies w(g\lls,) = w(‘cf\ls) and is thus also a tough set for G. However, since n > 16, it
follows that G'\ S’ has a tame component that is neither K, K», nor Cs. This violates
Lemma 3.3. By symmetry, u_4,us & W. So u_s,us € S. Therefore, v_7,v; € W,
and we have the structure shown in Figure 12. We consider two situations.

Figure 12: Wild component continues to avoid K.

Situation 1: vy € S. By the cutpoint rule (at vs), v € S. So us and v4 form a spoke
K, component. By the arguments used above for the K5 component formed by ug
and vy, we now get ur, ug € S and ug, ug, vy, v1; & S with ug, ug ¢ W. See Figure 13.

U7

® u ee p v- @ ¥ 7 ®

Figure 13: Situation 1 structure.

Situation 2: vy € S. By the 3-in-a-row rule we have vg ¢ S. Since having ug € S

would violate the 2-in-a-row rule at us, we have ug € S. Since having u; ¢ S

would violate the 2-in-a-row rule at vy, we have u; € S. By the cutpoint rule,

vg € S. So ug and vg form a spoke K, component and again applying the arguments

used above for the K, component formed by uo and vy, we get ug,u;; € S, and
U7 U3 _ Ug Us

U

s P (PN
DO VB VIV

Figure 14: Situation 2 structure.

ug, Vg, U1g, V11, V13 € S. See Figure 14.

Observe that the right-most 8-sections from Figures 12 through 14 are the same.

Hence, we can continue our arguments to the right, considering both situations at

each stage, and certain properties are common to all cases. Namely, for j odd, we

have u; € S and v; € W, and, for j even, we have u; € S and v; € W. Since this

pattern persists, it must be that n is even, w(G \ S) = 2 4+ 1, and |S| > 2. Since
n > 16,

|S] 3n
>
w(G\S) ™ 2n+4

contradicting the assumption that S is a tough set. This contradiction shows that
there must be no spoke K, components. That is, all of the components of G\ 5,
besides W, are K; components.

v

4
37
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Next, we claim that no vertex in S can be adjacent to two K; components from
different rims. If ug € S is adjacent to K; components at vy and uy, then vy,vy € S,
and there is no way to accommodate W. So suppose to the contrary that vy € S is
adjacent to K; components at ug and vy. SO u_1,ui,us,v4 € S. To accommodate
W, we must have v_s,v_1,v;,v3 € W. That the 2-in-a-row rule is now violated at
uy gives a contradiction and establishes our claim. Thus, each vertex in S must be
adjacent either to one K; component or to two K; components from the same rim.

Suppose there is a K; component on the outer rim, say ug. Thus we have the
structure shown in Figure 15 in the case that j = 0. Note that vy is adjacent

Ug Ug yi—]?
Figure 15: Outer rim chain.

to no other K; components and u; (and w_;) can only be adjacent to another K
component on the outer rim. If w; is adjacent to another K; component, then we
have the structure shown in Figure 15 in the case that 7 = 1. Of course, uz might
be adjacent to another K; component on the outer rim, and so on. The j in Figure
15 simply reflects the number of times we go on.

Suppose there is a K; component on the inner rim, say vo. Thus we have the
structure shown in Figure 16 in the case that ;7 = 0. Note that wg is adjacent

Uo Uq

lenersnapt ot

Figure 16: Inner rim chain.

to no other K; components and v, (and v_») can only be adjacent to another K
component on the inner rim. If vy is adjacent to another K; component, then we
have the structure shown in Figure 16 in the case that j = 1. Of course, vg might be
adjacent to another K; component on the inner rim, and so on. The j in Figure 16
simply reflects the number of times we go on.

Regard the K; components and vertices of S in sections of the types shown in
Figures 15 and 16 as full chains if their endmost vertices in S are adjacent to exactly
one K, component. For each type, the index j is some reflection of the length of the
full chain. Additionally, a full chain might wrap around the entire graph G(n,2).
Since each K; component must be adjacent to some vertex in S, each K; component
is in some full chain. Since no vertex in S can be adjacent to K; components from
different rims, all of the full chains are disjoint. Notice, within each full chain, that
the number of K; components is at most half of the number of vertices in S. Summing
over all full chains gives |S| > 2(w(G \ S) — 1). So,

|S| >2— 2 > §
w(G\S) ~ w(G\S) = 2
which contradicts the assumption that S is a tough set. O

As a consequence of Proposition 3.5, we can show that K; components must
occur.



TOUGH SETS FOR G(n,2) 219

w

Figure 17: Section A has Sy =3 and wa = 2.

ToeY

Figure 18: Section B has Sgp =4 and wg = 3.

Corollary 3.6. Let n > 6 with n # 10, and let S be a tough set for G(n,2). There
must be a Ky component in G(n,2)\ S.

Proof. In light of Appendix A of [3], it suffices to assume that n > 16. Suppose
there are no K; components. By Proposition 3.5, each component must be K, or
(5. Thus each component is adjacent to at least 4 vertices in S. Since each vertex in
S is adjacent to at most 3 components, it follows that 4w(G(n,2) \ S) < 3|S|. This
contradicts the fact that 7(G(n,2)) < 3. 0

4 Forced Sections

Definition 4.1. We say that a tough set S is trade equivalent to a tough set S’ if
S’ can be obtained from S by a sequence of applications of the trade rule. Moreover,
if a sequence of trades is restricted to vertices in some section M, then we say that
the resulting section M’ with the same vertex set is trade equivalent to M and write
M=~ M.

Since Proposition 3.5 tells us that the complement of a tough set contains only
three kinds of components, the potential changes in a tough set resulting from trades
are rather limited. In particular, Cs components are never affected by the trade rule.
The main result of this section is that each tough set for G(n,2) is trade equivalent
to one built from sections of the types A, B, B, B”, and C displayed and defined
in Figures 17 through 21. In each case, the displayed components are assumed to
end in the section as shown. That is, there are some vertices outside of the visible
section assumed to be in S. We also define

N3 = B”C,

and shall see that N3 needs to be considered as an alternative to M3;M,. Essentially,
our main result in this paper is that, for n > 13, each tough set is trade equivalent to
one built from the sections My, ..., Mg, N3. This is seen to be true for n = 13, 14,15
in Appendix A of [3]. We have additionally verified by computer that this is true for
n = 16,17,18,19. Thus, throughout this section, we assume that n > 20.

To simplify some of our proofs, we define an additional section type b. It is
defined and displayed in Figure 22 and is assumed to contain a K; component as
shown. Note that b serves as the beginning of B, B’, and B”. The reflection of b is
called d (of course). Note that the section type a in Figure 23 serves as the left end
of A and b.

In this section, we use our knowledge of the local structure of a tough set to
march around the graph and determine larger chunks of that structure.
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Tty

Figure 19: Section B’ has Sz = 8 and wp' = 6.

I2Y DT IDL T

Figure 20: Section B” has Spr = 12 and wgr = 9.

LJ

Figure 21: Section C has S¢ =1 and we = 1.

T8y

Figure 22: Section b has S, = 3 and w;, = 2.

g

Figure 23: Section a has S, = 2. Its components may extend beyond a.

Lemma 4.2. A tough set for G(n,2) cannot contain sections of the types shown in
Figure 24.

Figure 24: Sections forbidden by Lemma 4.2.

Proof. Suppose a tough set S does contain a section of one of the types shown in
Figure 24. We may assume that ¢ = 0. For part (a), let S’ = S\ {u_y,u;}. For part
(b), let S" =S U {uo} \ {u_1,u1,v0}. In both cases, we have

15| 5] -2 151

< )
w(G@\S") w(G\S)-1  w(G\S)
which contradicts the assumption that S is a tough set. O

Lemma 4.3. Let S be a tough set for G(n,2). If S contains a section of the type
shown on the left of Figure 25, then that section must be the left-end subsection of
that shown on the right.

Uj Uj
FRRRUTT - 5RR0E
Figure 25: Structure forced by Lemma 4.3.
Proof. Suppose S contains a section of the type shown on the left of Figure 25. We

may assume that ¢ = 1. Proposition 3.5 forces ug,vs € S, and the 3-in-a-row rule
gives us &€ S.
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Suppose toward a contradiction that vs € S. The 3-in-a-row rule gives v; € S.
By the trade rule with uz and vz and Lemma 4.2(a), we must have u;y ¢ S. By
Proposition 3.5 and the 2-in-a-row rule (at vs), we must have ug € S. However, we
can now trade uz with vs, and then trade w; with ug, to arrive at a contradiction
with Lemma 4.2(a).

We conclude that vs € S. Proposition 3.5 then gives v; € S, and the 3-in-a-row
rule forces u; ¢ S. d

4.1 Existence of A, B, B', or B”

In this subsection we strengthen Corollary 3.6. Recall that throughout Section 4 we
are retaining the assumption that n > 20.

Lemma 4.4. Every tough set for G(n,2) is trade equivalent to one containing a
section of type A, b, ord.

Proof. Let S be a tough set for G(n,2). By Corollary 3.6, G(n,2) \ S must have a
K, component.

Suppose a K; component is on the outer rim. We may assume uq ¢ S and
u_1,u1,v9 € S. By the 3-in-a-row rule, we cannot have both v_; and v; € S. If
v_1,v; € S, then we have a section of type A. So, assume v_; € S and v; € S.
Then us,v3 € S by the 3-in-a-row rule, and uz € S by Proposition 3.5. This gives
the structure shown in Figure 26. If vy ¢ S, then vy € S by Proposition 3.5, and

Uo

X581

Figure 26: An outer rim K; not part of an A section.

trading w; and uy gives d. So, assume vy € S. Then vy € S by the 3-in-a-row rule.
By Lemma 4.2(b), we must have us ¢ S. However, we may now trade v, and vy, and
then u; and us to obtain d.

Suppose a K; component is on the inner rim. We may assume vqg ¢ S and
Ug,V_g,v9 € S. It follows from Proposition 3.5 and the 3-in-a-row rule that we
cannot have both v_;,v; € S. So we may assume v; € S. The 3-in-a-row rule then

forces u; ¢ S, and we have the structure shown in Figure 27. If u, € S, then we
U

IINERY!

Figure 27: An inner rim K.

have an outer rim K as handled above. If uy ¢ S, then we have b. O

Lemma 4.5. Let S be a tough set for G(n,2) containing a section of type b. Then,
there is a trade equivalence with the section to its right so that b becomes the left-end
subsection of one of B, B', or B". The symmetric result holds for d.

Proof. We may assume uj,vs,v3 € S,uz,u3,v; & S. Proposition 3.5 gives uq € S,
and the 3-in-a-row rule gives vy € S. If vs € S, then we have B. So assume
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[Py aETYN

Figure 28: Section b starting more than B.

ve € S. Lemma 4.3 then forces the structure shown in Figure 28 with ug, v, vg € S,
us, Uz, vs & S.

Case 1: ug € S. S0 ug,v19 € S by the 3-in-a-row rule, and u;o € S by Proposition
3.5. If g € S, then S" = SU{vg} \ {us,vr,vs} is a disconnecting set with

S1__Isl-2  _ 3|
WG\~ w(G\8) -1 " w(G\S)

a contradiction. So we must have vy ¢ S. Proposition 3.5 then gives vy; € S, and
trading ug and ug gives B'.

Case 2: ug ¢ S. So ug € S by Proposition 3.5, and vg ¢ S by the 3-in-a-row
rule. If v;; € S, then we have B’. So assume vy; ¢ S. Lemma 4.3 then forces the
structure in Figure 29 with w1, v19, v13 € S, U109, U12, V10 & S.

Figure 29: Section b starting more than B'.

Subcase 2a: uyz € S. S0 uig,vis € S by the 3-in-a-row rule, and u;5 € S by
Proposition 3.5. If vy4 € S, then, similar to above, the disconnecting set S’ =
SU{v11}\ {u11, vi2,v13} contradicts the assumption that S is a tough set. Hence we
must have v14 € S. Proposition 3.5 then gives vig € S, and trading u;3 and uy4 gives
B".

Subcase 2b: uiz € S. So uyy € S by Proposition 3.5, and vy € S by the
3-in-a-row rule. If vig € S, then we have B”. So assume vig ¢ S. Lemma 4.3
forces the structure displayed in Figure 30 with uig € S, us,v15 ¢ S. However,
S = SU{us, us, u12, Vs, V10, V11, V14 } \ {6, U11, U14, Vs, V13, v13} is then a disconnecting
set with

15| S| +1 5]

DG\ S)  @(G\S) 11 ~w(G\S)

which shows that this subcase cannot occur. O

iPrOLTIETIET!

Figure 30: Section b starting more than B”.

Corollary 4.6. Every tough set for G(n,2) is trade equivalent to one containing a
section of type A, B, B', or B".
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4.2 Neighbors of Sections

Proposition 3.5 tells us that C' is a possible section in a tough set for G(n,2). Corol-
lary 4.6 establishes the importance of A, B, B', and B"”. We now explore the pos-
sible combinations of these important section types, still under the assumption that
n > 20.

Lemma 4.7. The sections dB", AB', AB", BB", B'B", B"B", B'B', AA, ABA,
ABB, ABB', BAB, BB'B, BBBA, BBBB, BBBB', B'BB, B'BB', and their
mirror images cannot occur in a tough set for G(n,2).

Proof. Let S be a tough set containing one of these sections.
If S contains AB' or AB”, then replacing AB' with BBB or replacing AB” with
BBB', respectively, yields a disconnecting set S’ with
15| |S]+1 |S]

DG\ S)  @(G\S) +1 " w(G\3)

If S contains dB" or B'B’, then replacing B” with C BC B or replacing B' B’ with
BCBC B, respectively, yields a disconnecting set S’ with
1] 15| -2 |S]

D(G\S)  @(G\S) =1 " @w(G\3)

Note that dB" is the right end of each of BB", B'B", and B"B".

If S contains AA, then trading us and vy (regarding the left end of AA as u; and
v1) contradicts the mirror image of Lemma 4.3.

If S contains ABa, then the fact that ABa =~ BAa contradicts Lemma 4.2(a).
Note that ABa is the left end of each of ABA, ABB, and ABB’'. Also, Lemma
4.2(a) directly forbids BAB.

If S contains BBBa or B'Ba, then replacing BBB with B'C or replacing B'B
with BC'AC yields a disconnecting set S’ with

1] 15| -3 5]

D(G\S) ~ w(G\S) -2 ~@w(G\3)

Note that BBBa is the left end of each of BBBA, BBBB, and BBBB’, and B'Ba
is the left end of both B'BB and B'BB’. Also, BB'B ~ B'BB. O

Lemma 4.8. Let S be a tough set for G(n,2) containing a section of type d. The
section to its right either is C or is trade equivalent to A, B, or B'.

Proof. Assume that the left end of d is at vertices u; and v,. That is, ug, vy, v, v5 € S
and uj,us, vz € S. By the 3-in-a-row rule, we cannot have both u4,v4 € S.

Case 1: uq,vg € S. If us ¢ S, then Proposition 3.5 gives ug,vs € S, and we
have dC'. So assume us € S. Proposition 3.5 gives vg € .S, the 3-in-a-row rule gives
ug ¢ S, and we have the structure shown in Figure 31. We can now trade uy and
us to get db, and Lemma 4.5 tells us that we can obtain one of dB, dB’, or dB".
However, by Lemma 4.7, dB" is impossible.



224 KEVIN K. FERLAND AND MEGAN L. HOLBEN

Uy U4

Figure 31: d meets ug,vq € S.
Uy U4

Figure 32: d meets ug € S,v4 € S.

Case 2: uqs € S and vy € S. The 3-in-a-row rule gives vg € S and the structure
shown in Figure 32. If us € S, then Proposition 3.5 gives ug € .S, and we can trade
ug and v4 to obtain dA. So assume ugs € S. The 3-in-a-row rule now gives ug &€ S.
Trading first us and ug, and then u, and vy, gives dA.

Case 3: uq € S and vy € S. The 3-in-a-row rule gives us € S, and we have the

structure shown in Figure 33. If ug ¢ S, then Proposition 3.5 gives vg € S, and, as
Uy Ua

STTXETTI

Figure 33: d meets uq € S,v4 € S.

above, we can obtain dB or dB’. So, assume ug € S. If vg € S, then we have dA.
So assume vg € S. Now, uy,vs € S by the 3-in-a-row rule. Further, v; ¢ S by the
reflection of Lemma 4.2(b), and vy € S by Proposition 3.5. Trading ue and uy gives
dB. O

Proposition 4.9. Let S be a tough set for G(n,2).

(a) If S contains a section of type A, then the section next to it either is
C or is trade equivalent to B.

(b) If S contains a section of type B, then the section next to it either is
C or is trade equivalent to A, B, or B'.

(¢) If S contains a section of type B', then the section next to it either is
C or is trade equivalent to B.

(d) If S contains a section of type B", then the section next to it is C.

(e) If S contains a section of type C, then the section neat to it is trade
equivalent to A, B, B', or B".

Proof. (a) Assume that the left end of A is at u; and vy. That is, uy,us, ve,vs € S
and uy,vy,v3 € S. By the 3-in-a-row rule, we cannot have both u4,vs € S.

Case 1: uq,vqs € S. If us € S, then Proposition 3.5 gives ug, vg € S, and we have
AC. So assume us € S. Proposition 3.5 now gives vg € .S, the 3-in-a-row rule gives
ug € S, and we have the structure shown in Figure 34. Trading us and us gives Ab.

Ui Uy

Figure 34: A meets uq,v4 € S.
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Lemma 4.5 now tells us that we can obtain one of AB, AB’, or AB". However, by
Lemma 4.7, AB' and AB" are impossible.
Case 2: uy ¢ S and vqg € S. The 3-in-a-row rule gives vg ¢ S, and we have
the structure shown in Figure 35. If us ¢ S, then Proposition 3.5 gives ug € S,
Figure 35: A meets uqs € S and v4 € S.

and the reflection of Lemma 4.3 contradicts the fact that vo € S. So, we must have
us € S. Further, ug ¢ S by the 3-in-a-row rule. We can now trade us and ug, and
the reflection of Lemma 4.3 again contradicts v, € S.

Case 3: ug € S and vy € S. So us € S by the 3-in-a-row rule. Since we could
trade us and vs, the 3-in-a-row rule forces v; € S, and we have the structure shown
in Figure 36. If ug ¢ S, then Proposition 3.5 gives vg € S, and, similar to case 1, we

Ui Uy
Figure 36: A meets uqs € S and vq &€ S.

obtain AB. So assume ug € S. Since Lemma 4.7 forbids AA, we must have vg € S.
The 3-in-a-row rule gives u; ¢ S. Now, trade ug and u;. As before, we obtain AB.

(b), (c), and (d) Since d is the right end of B, B, and B", Lemma 4.8 tells
us that the section next to them either is C or is trade equivalent to A, B, or B'.
However, Lemma 4.7 says that BB", B'A, B'B', B'B", B"A, B"B, B"B’, and B"B"
are impossible.

(e) Assume that the left end of C is at u; and vy. That is, uy,us,us,vi,vs € S
and vy, uq,vs € S. S0 us,vq € S by the 3-in-a-row rule, and we have Ca. If ug € S,
then Proposition 3.5 gives vg € S, we have Cb, and, by Lemma 4.5, we can obtain
one of CB, CB', or CB". So assume ug € S. If vg € S, then we have CA. So assume
vg € S. By the 3-in-a-row rule, u; ¢ S. By the 2-in-a-row rule (at vs), v; ¢ S. This
gives the structure shown in Figure 37, and trading ug and u; gives Cb, as handled
above. O

Uy Ug

Iy RO

Figure 37: C' meets a and ug,vg € S, uy,v; € S.

Starting from the sections listed in Corollary 4.6, we explore what can follow to
their right until a section of type C' is encountered.

Proposition 4.10. Let S be a tough set for G(n,?2).

(a) If S contains a section of type A, then there is a trade equivalence
with the section to its right so that A becomes the left-end subsection of
AC = Mg or ABC =~ M;.
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(b) If S contains a section of type B, then there is a trade equivalence
with the section to its right so that B becomes the left-end subsection of
BC = M,, BAC = M3, BBC = My, BBBC = M, or BB'C = M,.

(c) If S contains a section of type B', then there is a trade equivalence
with the section to its right so that B' becomes the left-end subsection of
B’C = M5 or BIBO = MQ.

(d) If S contains a section of type B", then B" is the left-end subsection
Of .B”C = Ng.

Proof. By Proposition 4.9, we need only consider certain sections.

(a) We consider AC, ABC, ABA, ABB, and ABB’. However, Lemma 4.7 ex-
cludes ABA, ABB, and ABB'.

(b) We consider BC, BAC, BAB, BBC, BBA, BBBC, BBBA, BBBB, BBBB'
BBB', BB'C, and BB'B. However, Lemma 4.7 excludes BAB, BBA, BBBA,
BBBB, BBBB', BBB', and BB'B.

(c) We consider B'C, B'BC, B'BA, B'BB, and B'BB’. However, Lemma 4.7
excludes B'BA, B'BB, and B'BB’.

Part (d) simply recasts Proposition 4.9(d). O

Corollary 4.11. Every tough set for G(n,2) contains a section of type C.

5 Global Structure of Tough Sets

Proof of Theorem 2.2. By our computer verification, it suffices to assume n >
20. Let S be a tough set for G(n,2). By Corollary 4.11, it has a section of type
C. By Proposition 4.9(e), the section to the right of this C' is trade equivalent to A,
B, B', or B". By Proposition 4.10, the section to the right of our initial C' must in
fact be trade equivalent to one of My, ..., Mg, N3. Since each of these ends in C, we
can continue this process and conclude that S must be trade equivalent to a tough
set built exclusively of key sections from the list My, ..., Mg, N3. We further claim
that we can assume that at most one of the key sections is not Mj. Of course, which
section is used besides M, depends upon the congruence class of n modulo 7.
Suppose that two or more sections are used from M;, ..., Mg, N3. Let m; and
my be their lengths. Since, permuting the key sections does not change the size of
S or w(G(n,2)\ S), we may assume that the m;- and my-section are next to each
other forming an (mj + mg)-section M. Since mq,my > 6, we have my + my > 12.
Consequently, there is some r € {6,7,15,16,10,11,12} such that r < m; + my and
my+ms =7 (mod 7). Replace M by a new (m; +ms)-section M’ built by attaching
an r-section from My, ..., Mg to % copies of My. It is straightforward to check
in each case that
Sr+5("E) Sy + Sy
o+ A(EEET) S 5 T,

That is, M’ is no worse a choice for an (m; +ms)-section than M. By repeating this
process, as necessary, we can replace the tough set S by one that uses at most one

(5.1)

7
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section from My, ..., Ms. Now,
|5]
w(G(n,2)\ 5)
is easily computed and seen to have the asserted value. Ol

In verifying (5.1), there are four cases in which equality occurs. In each of those
cases, a certain pair of sections from Mp,..., Mg can be replaced by some other
combination of sections from that list without changing the size of the tough set.
Consequently, we say that the pair-section and its replacement are size equivalent
sections. We denote this weaker notion of size equivalence between sections and tough
sets by the symbol ~. Our proof of Theorem 2.2 establishes that any two tough sets
for G(n,2) are size equivalent. Moreover, with the additional consideration of the
relationship between N3 and Mj, there are five basic size equivalences

MMy ~ M}
MaMy ~  MyMs
MzMy ~ MyMs
MsM; ~ M?
MzMy ~ Nj.

The last two are the most intriguing since they do not preserve the number of Cj
components. It is straightforward to verify that there are no further combinations
of sections from Mj,..., Mg, N3 resulting in size equivalences. After we strip out
the dihedral symmetries, the trade equivalences, and the freedom to permute the
key sections, the five relations listed above generate all size equivalences. Note that,
modulo dihedral symmetries, tough sets are unique when n = 5,6, or 0 (mod 7).
There are two when n = 4 (mod 7), but they are trade equivalent.
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