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1 Introduction

The Open Cloud Computing Interface (OCCI) is a RESTful Protocol and API for all kinds of management tasks.
OCCI was originally initiated to create a remote management API for IaaS1 model-based services, allowing
for the development of interoperable tools for common tasks including deployment, autonomic scaling and
monitoring. It has since evolved into a flexible API with a strong focus on interoperability while still offering a
high degree of extensibility. The current release of the Open Cloud Computing Interface is suitable to serve
many other models in addition to IaaS, including PaaS and SaaS.

In order to be modular and extensible the current OCCI specification is released as a suite of complementary
documents, which together form the complete specification. The documents are divided into four categories
consisting of the OCCI Core, the OCCI Protocols, the OCCI Renderings and the OCCI Extensions.

• The OCCI Core specification consists of a single document defining the OCCI Core Model. OCCI
interaction occurs through renderings (including associated behaviors) and is expandable through
extensions.

• The OCCI Protocol specifications consist of multiple documents, each describing how the model can be
interacted with over a particular protocol (e.g. HTTP, AMQP, etc.). Multiple protocols can interact
with the same instance of the OCCI Core Model.

• The OCCI Rendering specifications consist of multiple documents, each describing a particular rendering
of the OCCI Core Model. Multiple renderings can interact with the same instance of the OCCI Core
Model and will automatically support any additions to the model which follow the extension rules defined
in OCCI Core.

• The OCCI Extension specifications consist of multiple documents, each describing a particular extension
of the OCCI Core Model. The extension documents describe additions to the OCCI Core Model defined
within the OCCI specification suite.

The current specification consists of seven documents. This specification describes version 1.2 of OCCI and
is backward compatible with 1.1. Future releases of OCCI may include additional protocol, rendering and
extension specifications. The specifications to be implemented (MUST, SHOULD, MAY) are detailed in the
table below.

Table 1. What OCCI specifications must be implemented for the specific version.

Document OCCI 1.1 OCCI 1.2

Core Model MUST MUST
Infrastructure Model SHOULD SHOULD
Platform Model MAY MAY
SLA Model MAY MAY
HTTP Protocol MUST MUST
Text Rendering MUST MUST
JSON Rendering MAY MUST

2 Notational Conventions

All these parts and the information within are mandatory for implementors (unless otherwise specified). The key
words ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHALL”, ”SHALL NOT”, ”SHOULD”, ”SHOULD NOT”,
”RECOMMENDED”, ”MAY”, and ”OPTIONAL” in this document are to be interpreted as described in RFC
2119 [1].

The following terms [2] are used when referring to URL components:

1Infrastructure as a Service
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http://example.com:8080/over/there?action=stop#xyz

\__/ \______________/\_________/ \_________/ \_/

| | | | |

scheme authority path query fragment

3 OCCI RESTful HTTP Protocol

This document specifies the OCCI HTTP Protocol, a RESTful protocol for communication between OCCI
server and OCCI client. The OCCI HTTP Protocol support multiple different data formats as payload. Data
formats are specified an separate documents.

4 Namespace

The OCCI HTTP Protocol maps the OCCI Core model into the URL hierarchy by binding Kind and Mixin
instances to unique URL paths. Such a URL path is called the location of the Kind or Mixin. A provider is free
to choose the location as long as it is unique within the service provider’s URL namespace. For example, the
Kind instance2 for the Compute type may be bound to /my/occi/api/compute/.

Whenever a location is rendered it MUST be either a String or as defined in RFC6570 [3].

A Kind instance whose associated type cannot be instantiated MUST NOT be bound to an URL path. This
applies to the Kind instance for OCCI Entity which, according to OCCI Core, cannot be instantiated [4].

4.1 Bound and Unbound Paths

Since a limited set of URL paths are bound to Kind and Mixin instances the URL hierarchy consists of both
bound and unbound paths. A bound URL path is the location of a Kind or Mixin collection.

An unbound URL path MAY represent the union of all Kind and Mixin collection ‘below’ the unbound path.

5 Headers and Status Codes

OCCI clients and Servers MUST include a minimum set of mandatory HTTP headers in each request and
response in order to be compliant. There is also a minimum set of HTTP status codes which MUST be
supported by an implementation of the OCCI HTTP Protocol.

5.1 Requests Headers

Accept An OCCI client SHOULD specify the media types of the OCCI data formats it supports in the Accept

header.

Content-type If an OCCI client submits payload in a HTTP request the OCCI client MUST specify the media
type of the OCCI data format in the Content-type header.

User-Agent An OCCI client SHOULD specify the OCCI version number in the User-Agent header. See
Section 5.3.

2http://schemas.ogf.org/occi/infrastructure#compute
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5.2 Response Headers

Accept An OCCI server SHOULD specify the media types of the OCCI data formats it supports in the Accept

header.

Content-type An OCCI server MUST specify the media type of the OCCI data format used in an HTTP
response.

Server An OCCI server MUST specify the OCCI version number in the Server header. See Section 5.3.

5.3 Versioning

Information about the OCCI version supported by a server implementation MUST be advertised to a client on
each response. The version field in the response MUST include the value OCCI/X.Y, where X is the major
version number and Y is the minor version number of the implemented OCCI version. The server response
MUST relay versioning information using the HTTP ‘Server’ header.

HTTP/1.1 200 OK

Server: occi-server/1.1 (linux) OCCI/1.2

[...]

Complementing the server-side behavior of an OCCI implementation, a client SHOULD indicate the version it
expects to interact with. In a client, this information SHOULD be advertised in all requests it issues. A client
request SHOULD relay versioning information in the ‘User-Agent’ header. The ‘User-Agent’ header MUST
include the same value (OCCI/X.Y) as advertised by the server.

GET /-/ HTTP/1.1

Host: example.com

User-Agent: occi-client/1.1 (linux) libcurl/7.19.4 OCCI/1.2

[...]

If an OCCI implementation receives a request from a client that supplies a version number higher than the
server supports, the server MUST respond back to the client with an HTTP status code indicating that the
requested version is not implemented. The HTTP 501 Not Implemented status code MUST be used.

OCCI implementations compliant with this version of the document MUST use the version string OCCI/1.2.
Versioning of extensions is out of scope for this document.

5.4 Status Codes

The below list specifies the minimum set of HTTP status codes an OCCI client MUST understand. An OCCI
server MAY return other HTTP status codes but the exact client behavior in such cases is not specified. The
return codes are specified by [5] and [6].

200 OK indicates that the request has succeeded.

201 Created indicates that the request has been fulfilled and has resulted in one or more new resources being
created.

204 No Content indicates that the server has fulfilled the request but does not need to return a body, relevant
headers MAY be present.

400 Bad Request indicates that the server cannot or will not process the request due to something that is
perceived to be a client error

401 Unauthorized indicates that the request has not been applied because it lacks valid authentication
credentials for the target resource.
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403 Forbidden indicates that the server understood the request but refuses to authorize it.

404 Not Found indicates that the origin server did not find a current representation for the target resource
or is not willing to disclose that one exists

405 Method Not Allowed indicates that the method received in the request-line is known by the origin
server but not supported by the target resource.

406 Not Acceptable indicates that the target resource does not have a current representation that would be
acceptable to the user agent

409 Conflict indicates that the request could not be completed due to a conflict with the current state of
the resource

413 Request Entity Too Large indicates that the request is larger than the server is willing or able to
process.

500 Internal Server Error indicates that the server encountered an unexpected condition that prevented it
from fulfilling the request.

501 Not Implemented indicates that the server does not support the functionality required to fulfill the
request.

503 Service Unavailable indicates that the server is currently unable to handle the request due to a temporary
overload or maintenance of the server

6 Pagination

To request partial results of an otherwise large collection message response, pagination SHOULD be used to
reduce the load on both the client and the service provider. This is done in the following manner.

The HTTP GET verb is used when accessing a URL of a collection and the query parameters of page and
number MUST be used. page is an indexed integer that refers to a sub-collection of the requested collection.
number is an integer of items that SHOULD be displayed in one paged response.

If number is too large for the provider to handle (policy, technical limitations) then an HTTP 413 Request
Entity Too Large response status code MUST be issued to the requesting client.

If there is no more content to be served, the response status code issued to the requesting client MUST be an
HTTP 200 OK and the response body MUST contain an empty collection.

7 Filtering

To request a sub-set of the given collection of Category instances or Entity sub-type instances, filtering SHOULD
be used to specify the appropriate elements of the collection. Filtering can be performed via the HTTP GET
verb on the Query Interface and on various Entity sub-type instance collections. The following specification
of the filtering mechanism is in the process of being deprecated and will be replaced by a new mechanism in
the next MAJOR release of the standard. In its current form, the availability of the filtering mechanism is
restricted to rendering formats transportable in HTTP headers.

7.1 Query Interface

Filtering on the Query Interface SHOULD be performed via the HTTP GET verb by including a Category
instance rendering in the HTTP request headers. If supported, the response MUST contain only Category
instances related to the given Category instance. This includes Kinds, Actions and Mixins.

occi-wg@ogf.org 7
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7.2 Entity Sub-type Instance Collection

Filtering on Entity sub-type instance collections SHOULD be performed via the HTTP GET verb by including
an Entity sub-type instance rendering in the HTTP request headers. If supported, the response MUST contain
only Entity sub-type instances with Attribute values matching the given Entity sub-type instance Attribute
values.

Filtering Entity sub-type instances by assigned Mixin instances is implemented via Mixin-defined collections.

8 HTTP Methods Overview

Table 2 provides a brief overview of the HTTP verb usage. For details, please, see the sections below.

Table 2. HTTP Verb Behavior Summary (* = Supports filtering mechanisms)

Path GET POST POST (Action) PUT DELETE

Entity sub-
type instance
(/compute/1).

Retrieve the En-
tity sub-type in-
stance representa-
tion.

Partial update of
the Entity sub-
type instance.

Perform an action
on the Entity sub-
type instance.

Create/Update
the Entity sub-
type instance,
supplying the full
representation of
the instance.

Delete the En-
tity sub-type in-
stance.

Entity sub-
type instance
collection
(/compute/).

Retrieve a collec-
tion of Entity sub-
type instances*.

Create a new En-
tity sub-type in-
stance in this col-
lection.

Perform actions
on a collection
of Entity sub-type
instances.

Not Defined. Remove Entity
sub-type in-
stances from the
collection.

Mixin-defined En-
tity sub-type in-
stance collection
(/my stuff/).

Retrieve a collec-
tion of Entity sub-
type instances*.

Add an Entity
sub-type instance
to this collection.

Perform actions
on a collection
of Entity sub-type
instances.

Update the collec-
tion supplying the
full representation
of the new collec-
tion. Including re-
moval and addi-
tion of Entity sub-
type instances.

Remove Entity
sub-type in-
stances from the
collection.

Query interface
(/-/).

Retrieve Category
instances*.

Add a user-
defined Mixin
instance.

Not Defined. Not Defined. Remove a user-
defined Mixin in-
stance.

9 HTTP Methods Applied to Query Interface

This section describes HTTP methods used to retrieve and manipulate category instances. With the help of
the query interface it is possible for the client to determine the capabilities of the OCCI implementation it
refers to.

The query interface MUST be implemented by all OCCI implementations. It MUST be found at:

/-/

Implementations MAY also adopt RFC5785 [7] compliance to advertise this location. Should implementations
wish to advertise the Query Interface using the well-known mechanism then they MUST use the following
path served from the authority:

/.well-known/org/ogf/occi/-/

The renderings for the Category instance and Category collection are defined in [8] and [9].

occi-wg@ogf.org 8
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9.1 GET Method

Client GET request

The request MAY include a possible filter rendering.

Server GET response

The response MUST include a category collection rendering.

Upon a successful request a 200 OK status code MUST be used.

9.2 PUT Method

N/A

9.3 POST Method

Client POST request

The request MUST include at least one full category instance rendering. It MAY include a category collection
rendering.

Server POST response

Upon a successful processing of the request, the 200 OK status code MUST be returned.

9.4 DELETE Method

Client DELETE request

The request MUST include at least one full category instance rendering. It MAY include a category collection
rendering.

Server DELETE response

Upon a successful processing of the request, the 200 OK status code MUST be returned.

10 HTTP Methods Applied to Entity Instances

This section describes HTTP methods used to retrieve and manipulate individual entity instances. An entity
instance refers to an instance of the OCCI Resource type, OCCI Link type or a sub-type thereof [4].

Each HTTP method described is assumed to operate on an URL referring to a single element in a collection, a
URL such as the following:

http://example.com/compute/012d2b48-c334-47f2-9368-557e75249042

The renderings for the entity and action instances are defined in [8] and [9].

10.1 GET Method

The HTTP GET method retrieves a rendering of a single (existing) entity instance.

occi-wg@ogf.org 9
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Client GET request

N/A

Server GET response

The response MUST contain an entity instance rendering.

Upon a successful processing of the request, the 200 OK status code MUST be returned.

10.2 PUT Method

The HTTP PUT method either creates a new or replaces an existing entity instance at the specified URL.

10.2.1 Create

Client PUT request
The request MUST contain an entity instance rendering.

Server PUT response
The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-
tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the
201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.

10.2.2 Replace

Any OCCI Links associated with an existing OCCI Resource MUST be left intact.

Client PUT request
The request MUST contain an entity instance rendering.

Server PUT response
The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-
tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the
201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.

10.3 POST Method

The HTTP POST method either partially updates an existing entity instance or triggers an action on an
existing entity instance.

10.3.1 Partial Update

Client POST request
The request MUST contain a partial entity instance rendering of the entity instance to be changed.

Server POST response
The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-
tation returns the 200 OK status code, an entity instance rendering MUST be included as well. In case of the
201 Created status code, a location (as defined in RFC7231 [5]) MUST be included.

occi-wg@ogf.org 10
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10.3.2 Trigger Action

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST
contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.

Client POST request
The request MUST contain an action invocation rendering.

Server POST response
The HTTP GET response MAY contain an entity instance rendering or a Category instance rendering depending
on the requirements of the specified Action.

Upon a successful processing of the request, the 200 OK status code MUST be returned.

10.4 DELETE Method

The HTTP DELETE method deletes an entity instance

Client DELETE request

N/A

Server DELETE response

Upon a successful processing of the request, the 200 OK or 204 No Content status code MUST be returned.

11 HTTP Methods Applied to Collections

This section describes the HTTP methods used to retrieve and manipulate collections. A collection refers to a
set of entity instances.

Each HTTP method described is assumed to operate on an URL referring to a collection, an URL such as the
following:

http://example.com/compute/

The renderings for the entity instance, entity collection and action instances are defined in [8] and [9].

11.1 GET Method

The HTTP GET method retrieves a rendering of a collection of existing entity instances.

Client GET request

The request MAY include a possible filter rendering.

Server GET response

The response MUST include an entity collection rendering.

Upon a successful processing of the request, the 200 OK status code MUST be returned.

occi-wg@ogf.org 11
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11.2 PUT Method

The HTTP PUT is only defined for a collection defined by a Mixin. It makes replacing the collection possible.

Client PUT request

The request MUST include an entity collection rendering.

Server PUT response

The response MUST include an entity collection rendering.

Upon a successful processing of the request, the 200 OK status code MUST be returned.

11.3 POST Method

The HTTP POST method is defined for creation of an entity instance, association of entity instance with a
Mixin and triggering actions.

11.3.1 Create Entity Instance

Client POST request
The request MUST include at least one full entity instance rendering. It MAY include an entity collection
rendering.

Server POST response
The OCCI implementation MAY return either the 201 Created or 200 OK status code. If the OCCI implemen-
tation returns the 200 OK status code, an entity instance rendering or collection rendering MUST be included
as well. In case of the 201 Created status code, an entity instance location (as defined in RFC7231 [5]) or a
list of entity instance locations MUST be included.

11.3.2 Associate Mixin with Entity Instance

This operation MUST only be available for collections defined by a Mixin.

Client POST request
The request MUST include an entity collection rendering which require the Mixin to be applied.

Server POST response
On successful operation the server replies with the 200 OK HTTP status code it MUST include an entity
collection rendering.

11.3.3 Trigger Action

Actions are triggered using the HTTP POST verb and by adding a query string to the URL. This query MUST
contain a key-value pair. The key MUST be ‘action’. The value MUST equal to the Action’s term.

Client POST request
The request MUST contain an action invocation rendering.

occi-wg@ogf.org 12
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Server POST response
The HTTP GET response MAY contain an entity collection rendering or a Category collection rendering
depending on the requirements of the specified Action.

Upon a successful processing of the request, the 200 OK status code MUST be returned.

11.4 DELETE Method

The HTTP delete method is used to either delete all entity instances in a collection or disassociate entity
instance from a collection defined by a Mixin.

11.4.1 Delete Entity Instances

Client DELETE request
N/A

Server DELETE response
Upon a successful processing of the request, the 200 OK or 204 No Content status code MUST be returned.

11.4.2 Disassociate Mixin from Entity Instances

This operation MUST only be available for collections defined by a Mixin.

Client DELETE request
The request MAY include entity collection rendering which requires the Mixin to be disassociated.

Server DELETE response
Upon a successful processing of the request, the 200 OK status code MUST be returned.

12 Security Considerations

The OCCI HTTP rendering assumes HTTP or HTTP-related mechanisms for security. As such, implementations
SHOULD support TLS3 for transport layer security.

Authentication SHOULD be realized by HTTP authentication mechanisms, namely HTTP Basic or Digest
Auth [10], with the former as default. Additional profiles MAY specify other methods and should ensure that
the selected authentication scheme can be rendered over the HTTP or HTTP-related protocols.

Authorization is not enforced on the protocol level, but SHOULD be performed by the implementation. For
the authorization decision, the authentication information as provided by the mechanisms described above
MUST be used.

Protection against potential Denial-of-Service scenarios is out of scope of this document; the OCCI HTTP
Protocol specification assumes cooperative clients that SHOULD use selection and filtering as provided by
the Category mechanism wherever possible. Additional profiles to this document, however, MAY specifically
address such scenarios; in that case, best practices from the HTTP ecosystem and appropriate mechanisms as
part of the HTTP protocol specification SHOULD be preferred.

As long as specific extensions of the OCCI Core and Model specification do not impose additional security
requirements on top of the OCCI Core and Model specification itself, the security considerations documented
above apply to all (existing and future) extensions. Otherwise, an additional profile to this specification MUST
be provided; this profile MUST express all additional security considerations using HTTP mechanisms.

3http://datatracker.ietf.org/wg/tls/
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13 Glossary

Term Description
Action An OCCI base type. Represents an invocable operation on an Entity sub-type

instance or collection thereof.
Attribute A type in the OCCI Core Model. Describes the name and properties of attributes

found in Entity types.
Category A type in the OCCI Core Model and the basis of the OCCI type identification

mechanism. The parent type of Kind.
capabilities In the context of Entity sub-types capabilities refer to the Attributes and Actions

exposed by an entity instance.
Collection A set of Entity sub-type instances all associated to a particular Kind or Mixin

instance.
Entity An OCCI base type. The parent type of Resource and Link.
entity instance An instance of a sub-type of Entity but not an instance of the Entity type itself. The

OCCI model defines two sub-types of Entity: the Resource type and the Link type.
However, the term entity instance is defined to include any instance of a sub-type
of Resource or Link as well.

Kind A type in the OCCI Core Model. A core component of the OCCI classification
system.

Link An OCCI base type. A Link instance associates one Resource instance with another.
Mixin A type in the OCCI Core Model. A core component of the OCCI classification

system.
mix-in An instance of the Mixin type associated with an entity instance. The “mix-in”

concept as used by OCCI only applies to instances, never to Entity types.
OCCI Open Cloud Computing Interface.
OGF Open Grid Forum.
Resource An OCCI base type. The parent type for all domain-specific Resource sub-types.
resource instance See entity instance. This term is considered obsolete.
tag A Mixin instance with no attributes or actions defined. Used for taxonomic organi-

sation of entity instances.
template A Mixin instance which if associated at instance creation-time pre-populate certain

attributes.
type One of the types defined by the OCCI Core Model. The Core Model types are

Category, Attribute, Kind, Mixin, Action, Entity, Resource and Link.
concrete type/sub-type A concrete type/sub-type is a type that can be instantiated.
URI Uniform Resource Identifier.
URL Uniform Resource Locator.
URN Uniform Resource Name.
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15 Intellectual Property Statement

The OGF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that
it has made any effort to identify any such rights. Copies of claims of rights made available for publication
and any assurances of licenses to be made available, or the result of an attempt made to obtain a general
license or permission for the use of such proprietary rights by implementers or users of this specification can be
obtained from the OGF Secretariat.

The OGF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this recommendation.
Please address the information to the OGF Executive Director.

16 Disclaimer

This document and the information contained herein is provided on an “As Is” basis and the OGF disclaims all
warranties, express or implied, including but not limited to any warranty that the use of the information herein
will not infringe any rights or any implied warranties of merchantability or fitness for a particular purpose.

17 Full Copyright Notice

Copyright c© Open Grid Forum (2009-2016). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in
whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included as references to the derived portions on all such copies and derivative works. The published OGF
document from which such works are derived, however, may not be modified in any way, such as by removing
the copyright notice or references to the OGF or other organizations, except as needed for the purpose of
developing new or updated OGF documents in conformance with the procedures defined in the OGF Document
Process, or as required to translate it into languages other than English. OGF, with the approval of its board,
may remove this restriction for inclusion of OGF document content for the purpose of producing standards in
cooperation with other international standards bodies.
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The limited permissions granted above are perpetual and will not be revoked by the OGF or its successors or
assignees.
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