[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A325979
Odd numbers k for which gcd(A325977(k), A325978(k)) is equal to abs(A325978(k)).
5
1, 3465, 72981, 78651, 80937, 152703, 199341, 201771, 241605, 253287, 492507, 631881, 880821, 933147, 985473, 1063755, 1209285, 1244133, 1292445, 1313235, 1327095, 1347885, 1360881, 1451835, 1521135, 1597365, 1620375, 1814373, 2015475, 2664585, 6058233, 6676371, 8186751, 11119761, 17496243, 18379935, 28695627
OFFSET
1,2
COMMENTS
Provided that A325977(k) and A325978(k) are never zero for the same k, these are odd numbers k such that A325978(k) is not zero and divides A325977(k).
Of the first 65 terms, only a(5) = 80937 and a(51) = 86086881 are in A228058.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..281 (terms < 10^12; first 65 terms from Antti Karttunen)
PROG
(PARI)
A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
A034460(n) = (A034448(n) - n);
A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
A325313(n) = (A048250(n) - n);
A325977(n) = ((A034460(n)+A325313(n))/2);
A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
A325314(n) = (n - A162296(n));
A048146(n) = (sigma(n)-A034448(n));
A325814(n) = (n-A048146(n));
A325978(n) = ((A325314(n)+A325814(n))/2);
A325975(n) = gcd(A325977(n), A325978(n));
isA325979(n) = ((n%2)&&(A325975(n)==abs(A325978(n))));
\\ Or alternatively as:
isA325979(n) = if(!(n%2), 0, my(x = A325977(n), y = A325978(n)); (!x&&!y)||(y&&!(x%y)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 02 2019
STATUS
approved