[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A257754
Quasi-Carmichael numbers to exactly four bases.
10
60491, 61937, 65311, 76151, 116843, 127723, 159197, 164009, 168821, 194417, 272483, 284987, 329467, 364087, 369857, 370817, 385241, 389327, 395497, 407837, 423701, 431393, 465043, 509461, 613927, 837209, 853607, 881717, 999919, 1041541, 1117213, 1279903, 1294819
OFFSET
1,1
LINKS
Tim Johannes Ohrtmann, Table of n, a(n) for n = 1..145
EXAMPLE
a(1) = 60491 because this is the first squarefree composite number n such that exactly four integers b except 0 exist such that for every prime factor p of n, p+b divides n+b (-239, -236, -231, -191): 60491=241*251 and 2, 12 both divide 60252 and 5, 15 both divide 60255 and 10, 20 both divide 60260 and 50, 60 both divide 60300.
PROG
(PARI) for(n=2, 1000000, if(!isprime(n), if(issquarefree(n), f=factor(n); k=0; for(b=-(f[1, 1]-1), n, c=0; for(i=1, #f[, 1], if((n+b)%(f[i, 1]+b)>0, c++)); if(c==0, if(!b==0, k++))); if(k==4, print1(n, ", ")))))
CROSSREFS
Cf. A257750 (every number of bases).
Cf. A257751, A257752, A257753, A257755, A257756, A257757, A258842 (1, 2, 3, 5, 6, 7 and 8 bases).
Cf. A257758 (first occurrences).
Sequence in context: A186556 A205983 A218488 * A234767 A186061 A237305
KEYWORD
nonn
AUTHOR
STATUS
approved