[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A218739
a(n) = (36^n - 1)/35.
3
0, 1, 37, 1333, 47989, 1727605, 62193781, 2238976117, 80603140213, 2901713047669, 104461669716085, 3760620109779061, 135382323952046197, 4873763662273663093, 175455491841851871349, 6316397706306667368565, 227390317427040025268341, 8186051427373440909660277
OFFSET
0,3
COMMENTS
Partial sums of powers of 36 (A009980).
FORMULA
From Vincenzo Librandi, Nov 07 2012: (Start)
G.f.: x/((1 - x)*(1 - 36*x)).
a(n) = 37*a(n-1) - 36*a(n-2).
a(n) = floor(36^n/35). (End)
E.g.f.: exp(x)*(exp(35*x) - 1)/35. - Stefano Spezia, Mar 28 2023
MATHEMATICA
LinearRecurrence[{37, -36}, {0, 1}, 30] (* Vincenzo Librandi, Nov 07 2012 *)
Join[{0}, Accumulate[36^Range[0, 20]]] (* Harvey P. Dale, Jun 03 2015 *)
PROG
(PARI) A218739(n)=36^n\35
(Magma) [n le 2 select n-1 else 37*Self(n-1)-36*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 07 2012
(Maxima) A218739(n):=(36^n-1)/35$
makelist(A218739(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Nov 04 2012
STATUS
approved