[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A215251
Product of terms in n-th row of A037306.
2
1, 1, 1, 2, 4, 36, 225, 7840, 313600, 45302400, 8930250000, 8373836401920, 9001015156742400, 41813367543204433176, 325385777102562972821025, 8270190445766978650521600000, 377177413291384771899817984000000, 62187743659065606074696974956949929984
OFFSET
1,4
COMMENTS
Also products of terms in rows of A047996.
LINKS
R. Bekes, J. Pedersen and B. Shao, Mad tea party cyclic partitions, College Math. J., 43 (2012), 24-36.
MAPLE
with (numtheory):
a:= n-> mul (add(phi(d)*binomial(n/d, k/d),
d=divisors(igcd(n, k))), k=0..n)/n^(n+1):
seq (a(n), n=1..20); # Alois P. Heinz, Sep 06 2012
MATHEMATICA
t[n_, k_] := Total[EulerPhi[#] * Binomial[n/#, k/#]& /@ Divisors[GCD[n, k]]]/n; Table[Times @@ Table[t[n, k], {k, 1, n}], {n, 1, 18}] (* Jean-François Alcover, Mar 07 2014 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 05 2012
STATUS
approved