OFFSET
1,3
COMMENTS
For a discussion and guide to related arrays, see A208510.
As triangle T(n,k) with 0 <= k <= n, it is (0, 4/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, -2/3, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 21 2012
Row sums are powers of 3 (A000244). - Philippe Deléham, Mar 21 2012
FORMULA
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 0, T(2,1) = 3 and T(n,k) = 0 if k < 0 or if k >= n.- Philippe Deléham, Mar 21 2012
G.f.: (-1-2*x*y+x)*x*y/((1+x*y)*(2*x*y+x-1)). - R. J. Mathar, Aug 12 2015
EXAMPLE
First five rows:
1;
0, 3;
0, 4, 5;
0, 4, 12, 11;
0, 4, 20, 36, 21;
First three polynomials v(n,x):
1
3x
4x + 5x^2.
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209131 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209132 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 05 2012
STATUS
approved