OFFSET
1,3
COMMENTS
Top edge: (1,2,3,5,8,...) = A000045(n+1), Fibonacci numbers.
Alternating row sums: 1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,...
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle T(n,k) given by (1, 0, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 08 2012
FORMULA
u(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 08 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-2), T(0,0) = 1, T(1,0) = 1, T(1,1) = 0 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-x-y*x+y*x^2-y^2*x^2)/(1-(2+y)*x-(y^2-1)*x^2).
EXAMPLE
First five rows:
1;
1, 2;
1, 5, 3;
1, 9, 12, 5;
1, 14, 31, 27, 8;
First three polynomials v(n,x):
1
1 + 2x
1 + 5x + 3x^2.
From Philippe Deléham, Mar 08 2012: (Start)
(1, 0, 1/2, 1/2, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0...) begins:
1;
1, 0;
1, 2, 0;
1, 5, 3, 0;
1, 9, 12, 5, 0;
1, 14, 31, 27, 8, 0;
1, 20, 65, 89, 55, 13, 0; ...
with row sums 1, 1, 3, 9, 27, 81, 243, 729, ... (powers of 3). (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A102756 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209130 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Mar 05 2012
STATUS
approved