[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A208332
Triangle of coefficients of polynomials u(n,x) jointly generated with A208333; see the Formula section.
4
1, 1, 1, 1, 1, 4, 1, 1, 6, 10, 1, 1, 8, 16, 28, 1, 1, 10, 22, 52, 76, 1, 1, 12, 28, 80, 156, 208, 1, 1, 14, 34, 112, 256, 472, 568, 1, 1, 16, 40, 148, 376, 832, 1408, 1552, 1, 1, 18, 46, 188, 516, 1296, 2640, 4176, 4240, 1, 1, 20, 52, 232, 676, 1872, 4320
OFFSET
1,6
COMMENTS
Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012
FORMULA
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 - 2*y*x + y*x^2 - 2*y^2*x^2)/(1 - x - 2*y*x + 2*y*x^2 - 2*y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - 2*T(n-2,k-1) + 2*T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
EXAMPLE
First five rows:
1;
1, 1;
1, 1, 4;
1, 1, 6, 10;
1, 1, 8, 16, 28;
First five polynomials u(n,x):
1, 1 + x, 1 + x + 4x^2, 1 + x + 6x^2 + 10x^3, 1 + x + 8x^2 + 16x^3 + 28x^4.
From Philippe Deléham, Apr 09 2012: (Start)
(1, 0, -1, 1, 0, 0, 0, ...) DELTA (0, 1, 3, -2, 0, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 1, 4, 0;
1, 1, 6, 10, 0;
1, 1, 8, 16, 28, 0;
1, 1, 10, 22, 52, 76, 0;
1, 1, 12, 28, 80, 156, 208, 0;
... (End)
MATHEMATICA
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := 2 x*u[n - 1, x] + 2 x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208332 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208333 *)
CROSSREFS
Cf. A208332.
Sequence in context: A174376 A131399 A069322 * A075112 A202687 A046554
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Feb 26 2012
STATUS
approved