[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151925
Write n as a sum of positive squares a^2+b^2+c^2+... with gcd(a,b,...) = 1; a(n) = minimal number of squares needed.
3
1, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 2, 3, 4, 3, 3, 4, 5, 3, 2, 3, 4, 2, 3, 4, 5, 2, 3, 3, 4, 3, 3, 4, 5, 2, 3, 3
OFFSET
1,2
COMMENTS
Similar to A002828, but only now primitive representations are allowed.
Of course a(n) >= A002828(n).
From Lagrange's theorem, a(n) <= 5 (see also Estermann, Grosswald, Th. 3, p. 176).
Furthermore, it appears (and should be easy to prove) that:
a(n) = 1 iff n=1
a(n) = 2 iff n in A008784\{1}
a(n) = 3 iff n in A151926
a(n) = 4 iff n == 4 or 7 mod 8
a(n) = 5 iff n == 0 mod 8
REFERENCES
Estermann, T., On the representations of a number as a sum of squares, Acta Arith., 45 (1937), 93-125.
E. Grosswald, Representations of Integers as Sums of Squares. Springer-Verlag, NY, 1985.
LINKS
N. J. A. Sloane, Fortran program
EXAMPLE
..... n .. a(n) ..<- Numbers when squared add to n ->
-----------------------------------------------------
......1......1......1
......2......2......1......1
......3......3......1......1......1
......4......4......1......1......1......1
......5......2......1......2
......6......3......1......1......2
......7......4......1......1......1......2
......8......5......1......1......1......1......2
......9......3......1......2......2
.....10......2......1......3
.....11......3......1......1......3
.....12......4......1......1......1......3
.....13......2......2......3
.....14......3......1......2......3
.....15......4......1......1......2......3
.....16......5......1......1......1......2......3
.....17......2......1......4
.....18......3......1......1......4
.....19......3......1......3......3
.....20......4......1......1......3......3
CROSSREFS
Sequence in context: A262304 A333609 A273149 * A106653 A173524 A049865
KEYWORD
nonn
AUTHOR
N. J. A. Sloane and Vinay Vaishampayan, Aug 06 2009, Aug 07 2009
STATUS
approved