OFFSET
0,3
COMMENTS
The graph of this sequence is a special case of de Rham's fractal curve. In general, the graph of any sequence of the form a(n)=sum_(1..n) [Sk(n)mod m - floor(p*Sk(n)/q)mod m], where Sk(n) is the digit sum of n, n in k-ary notation, p,q,m integers, gives a de Rham fractal curve. The self-symmetries of all of de Rham curves are given by the monoid that describes the symmetries of the infinite binary tree or Cantor set. This so-called period-doubling monoid is a subset of the modular group.
LINKS
John A. Pelesko, Generalizing the Conway-Hofstadter $10,000 Sequence, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.5.
Klaus Pinn, Order and Chaos in Hofstadter's Q(n) Sequence, arXiv:chao-dyn/9803012, 1998.
Klaus Pinn, A Chaotic Cousin Of Conway's Recursive Sequence, arXiv:cond-mat/9808031, 1998.
MATHEMATICA
Accumulate@ Array[Mod[#2, 2] - Mod[Floor[5 #2/7], 2] & @@ {#, DigitCount[#, 2, 1]} &, 85, 0] (* Michael De Vlieger, Jan 23 2019 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Ctibor O. Zizka, Apr 04 2008, Apr 15 2008
EXTENSIONS
Converted references to links - R. J. Mathar, Oct 30 2009
STATUS
approved