[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127817
a(n) = least k such that the remainder when 9^k is divided by k is n.
46
2, 7, 6, 5, 38, 723, 74, 2592842671511, 11, 3827, 14, 717, 34, 59035, 21, 259, 152, 237, 62, 626131, 30, 169, 58, 25, 56, 1921, 39, 361, 65, 49, 63010, 287, 48, 55, 46, 63, 932, 3786791, 69, 69637, 230, 221, 6707, 1057, 57, 4907, 253, 681, 148, 393217991, 70
OFFSET
1,1
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..10000 with -1 for large entries where a(n) has not yet been found, Nov 21 2016 [With 202 new terms, this supersedes an earlier table of Robert G. Wilson v et al.]
EXAMPLE
For n=4, since 9^5 == 4 (mod 5) and 9^k is not congruent to 4 (mod k) for any k < 5, a(4) = 5. Michael B. Porter, Dec 10 2016
MAPLE
a127817 := [seq(0, j=1..nmax)] ; for k from 1 do n := modp(9^k, k) ; if n > 0 and n <= nmax then if op(n, a127817) = 0 then a127817 := subsop(n=k, a127817) ; print( op(1..50, a127817) ) ; fi; fi; od: # R. J. Mathar, Jul 16 2009
MATHEMATICA
t = Table[0, {10000}]; k = 1; lst = {}; While[k < 4500000000, a = PowerMod[9, k, k]; If[ a<10001 && t[[a]]==0, t[[a]]=k; Print[{a, k}]]; k++ ]; t
KEYWORD
hard,nonn
AUTHOR
Alexander Adamchuk, Jan 30 2007
EXTENSIONS
a(8) <= 2592842671511 from Joe K. Crump (joecr(AT)carolina.rr.com), Feb 06 2007
I changed the Mathematica coding to reflect the current limits Robert G. Wilson v, Jul 18 2009
Value for a(8) as suggested by J. K. Crump confirmed by Hagen von Eitzen, Jul 21 2009
Authorship of a-file corrected by R. J. Mathar, Aug 24 2009
STATUS
approved