OFFSET
0,4
COMMENTS
Triangle T(n, k) read by rows given by [1, 2, -2, 0, 0, 0, ...] DELTA [1, 2, -2, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 11 2006
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
G.f.: 1/(1 - x*(1+y) - 2*x^2*(1+y)^2).
T(n, k) = J(n+1) * C(n, k), where J(n) = A001045(n).
T(n, 0) = T(n, n) = A001045(n+1).
T(2*n, n) = A124862(n).
Sum_{k=0..n} T(n, k) = A003683(n+1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A124861(n).
T(n, k) = T(n-1, k-1) + T(n-1, k) + 2*T(n-2, k-2) + 4*T(n-2, k-1) + 2*T(n-2, k), T(0, 0) = 1, T(n, k) = 0 if k < 0 or if k > n . - Philippe Deléham, Nov 11 2006
G.f.: T(0)/2, where T(k) = 1 + 1/(1 - (2*k + 1 + 2*x*(1+y))*x*(1 + y)/((2*k + 2 + 2*x*(1+y))*x*(1+y) + 1/T(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 06 2013
From G. C. Greubel, Feb 17 2023: (Start)
T(n, n-k) = T(n, k).
T(n, 1) = A193449(n).
Sum_{k=0..n} (-1)^k*T(n, k) = A000007(n). (End)
EXAMPLE
Triangle begins
1;
1, 1;
3, 6, 3;
5, 15, 15, 5;
11, 44, 66, 44, 11;
21, 105, 210, 210, 105, 21;
43, 258, 645, 860, 645, 258, 43;
MAPLE
A := proc(n, k) ## n >= 0 and k = 0 .. n
((-1)^n+2^(n+1))/3*binomial(n, k)
end proc: # Yu-Sheng Chang, Jan 15 2020
MATHEMATICA
jacobPascal[n_, k_]:= Binomial[n, k]*(2^(n+1) -(-1)^(n+1))/3; ColumnForm[Table[jacobPascal[n, k], {n, 0, 12}, {k, 0, n}], Center] (* Alonso del Arte, Jan 16 2020 *)
PROG
(Magma)
A124860:= func< n, k | Binomial(n, k)*(2^(n+1) - (-1)^(n+1))/3 >;
[A124860(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
(SageMath)
def A124860(n, k): return binomial(n, k)*(2^(n+1) - (-1)^(n+1))/3
flatten([[A124860(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Nov 10 2006
STATUS
approved