OFFSET
1,8
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..125
FORMULA
a(n) is 1/6 of the coefficient of x^0*y^0 in Product_{k=1..n} (x^(-2*k)+x^k*(y^k+y^(-k))).
EXAMPLE
For n=8 we have 84/75/6321, 84/732/651 and 831/75/642 so a(8)=3.
MAPLE
A112972:= n-> coeff(coeff(mul((x^(-2*k)+x^k*(y^k+y^(-k)))
, k=1..n), x, 0), y, 0)/6:
seq(A112972(n), n=1..20);
# second Maple program:
b:= proc() option remember; local i, j, t; `if`(args[1]=0,
`if`(nargs=2, 1, b(args[t] $t=2..nargs)), add(
`if`(args[j] -args[nargs]<0, 0, b(sort([seq(args[i]-
`if`(i=j, args[nargs], 0), i=1..nargs-1)])[],
args[nargs]-1)), j=1..nargs-1))
end:
a:= n-> (m-> `if`(irem(m, 3)=0, b((m/3)$3, n)/6, 0))(n*(n+1)/2):
seq(a(n), n=1..42); # Alois P. Heinz, Sep 03 2009
MATHEMATICA
b[args_List] := b[args] = Module[{nargs = Length[args]}, If[args[[1]] == 0, If[nargs == 2, 1, b[args // Rest]], Sum[If[args[[j]] - Last[args] < 0, 0, b[Append[Sort[Flatten[Table[args[[i]] - If[i == j, Last[args], 0], {i, 1, nargs-1}]]], Last[args]-1]]], {j, 1, nargs-1}]]];
a[n_] := If[Mod[#, 3] == 0, b[{#/3, #/3, #/3, n}]/6, 0]&[n(n+1)/2];
Array[a, 42] (* Jean-François Alcover, Oct 30 2020, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Floor van Lamoen, Oct 07 2005
EXTENSIONS
Extended beyond a(25) by Alois P. Heinz, Sep 03 2009
STATUS
approved