OFFSET
1,1
COMMENTS
These numbers, starting with 127, are repunit primes 1111111_n in a base n >= 2, so except 7, they are all Brazilian primes belonging to A085104. In fact, 7 = 111_2 is also Brazilian by this other way. (See Links "Les nombres brésiliens", § V.4 -§ V.5.) A088550 is generated by the bases n present in A100330. - Bernard Schott, Dec 20 2012
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Bernard Schott, Les nombres brésiliens, Quadrature, no. 76, avril-juin 2010, pages 30-38.
Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature.
EXAMPLE
a(3) = 1093 = 3^6 + 3^5 + 3^4 + 3^3 + 3^2 + 3 + 1 is prime.
MAPLE
MATHEMATICA
Select[Table[n^6 + n^5 + n^4 + n^3 + n^2 + n + 1, {n, 100}], PrimeQ] (* Alonso del Arte, Feb 07 2014 *)
Select[Table[Total[n^Range[0, 6]], {n, 100}], PrimeQ] (* Harvey P. Dale, Aug 13 2024 *)
PROG
(PARI) polypn(n, p) = { for(x=1, n, if(p%2, y=2, y=1); for(m=1, p, y=y+x^m; ); if(isprime(y), print1(y", ")); ) }
(Magma) [a: n in [0..100] | IsPrime(a) where a is 1+n+n^2+n^3+n^4+n^5+n^6] ; // Vincenzo Librandi, Jul 14 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Cino Hilliard, Nov 17 2003
STATUS
approved