[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A085880
Triangle T(n,k) read by rows: multiply row n of Pascal's triangle (A007318) by the n-th Catalan number (A000108).
13
1, 1, 1, 2, 4, 2, 5, 15, 15, 5, 14, 56, 84, 56, 14, 42, 210, 420, 420, 210, 42, 132, 792, 1980, 2640, 1980, 792, 132, 429, 3003, 9009, 15015, 15015, 9009, 3003, 429, 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430, 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862
OFFSET
0,4
COMMENTS
Coefficients of terms in the series reversion of (1-k*x-(k+1)*x^2)/(1+x). - Paul Barry, May 21 2005
Equals A131427 * A007318 as infinite lower triangular matrices. [Philippe Deléham, Sep 15 2008]
Sum_{k=0..n} T(n,k)*x^k = A168491(n), A000007(n), A000108(n), A151374(n), A005159(n), A151403(n), A156058(n), A156128(n), A156266(n), A156270(n), A156273(n), A156275(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Nov 15 2013
Diagonal sums are A052709(n+1). - Philippe Deléham, Nov 15 2013
LINKS
FORMULA
Triangle given by [1, 1, 1, 1, 1, 1, ...] DELTA [1, 1, 1, 1, 1, 1, ...] where DELTA is Deléham's operator defined in A084938.
Sum_{k>=0} T(n, k) = A151374(n) (row sums). - Philippe Deléham, Aug 11 2005
G.f.: (1-sqrt(1-4*(x+y)))/(2*(x+y)). - Vladimir Kruchinin, Apr 09 2015
EXAMPLE
Triangle starts:
[ 1] 1;
[ 2] 1, 1;
[ 3] 2, 4, 2;
[ 4] 5, 15, 15, 5;
[ 5] 14, 56, 84, 56, 14;
[ 6] 42, 210, 420, 420, 210, 42;
[ 7] 132, 792, 1980, 2640, 1980, 792, 132;
[ 8] 429, 3003, 9009, 15015, 15015, 9009, 3003, 429;
[ 9] 1430, 11440, 40040, 80080, 100100, 80080, 40040, 11440, 1430;
[10] 4862, 43758, 175032, 408408, 612612, 612612, 408408, 175032, 43758, 4862;
...
MAPLE
seq(seq(binomial(n, k)*binomial(2*n, n)/(n+1), k = 0..n), n = 0..10); # G. C. Greubel, Feb 07 2020
MATHEMATICA
Table[Binomial[n, k]*CatalanNumber[n], {n, 0, 10}, {k, 0, n}]//Flatten (* G. C. Greubel, Feb 07 2020 *)
PROG
(PARI) tabl(nn) = {for (n=0, nn, c = binomial(2*n, n)/(n+1); for (k=0, n, print1(c*binomial(n, k), ", "); ); print(); ); } \\ Michel Marcus, Apr 09 2015
(Magma) [Binomial(n, k)*Catalan(n): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 07 2020
(Sage) [[binomial(n, k)*catalan_number(n) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Feb 07 2020
(GAP) Flat(List([0..10], n-> List([0..n], k-> Binomial(n, k)*Binomial(2*n, n)/( n+1) ))); # G. C. Greubel, Feb 07 2020
CROSSREFS
Sequence in context: A167685 A268740 A120493 * A055883 A366588 A085843
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Aug 17 2003
STATUS
approved