[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A079216
Square array A(n>=0,k>=1) (listed antidiagonally: A(0,1)=1, A(1,1)=1, A(0,2)=1, A(2,1)=2, A(1,2)=1, A(0,3)=1, A(3,1)=3, ...) giving the number of n-edge general plane trees fixed by k-fold application of Catalan Automorphisms A057511/A057512 (Deep rotation of general parenthesizations/plane trees).
14
1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 5, 5, 2, 1, 1, 6, 11, 3, 2, 1, 1, 10, 26, 8, 5, 2, 1, 1, 11, 66, 18, 11, 3, 2, 1, 1, 18, 161, 43, 30, 5, 5, 2, 1, 1, 21, 420, 104, 82, 6, 14, 3, 2, 1, 1, 34, 1093, 273, 233, 15, 38, 5, 5, 2, 1, 1, 35, 2916, 702, 680, 36, 111, 6, 11, 3, 2, 1, 1, 68, 7819, 1870
OFFSET
0,4
COMMENTS
Note: the counts given here are inclusive, e.g. A(n,6) includes the counts A(n,3) and A(n,2) which in turn both include A(n,1).
FORMULA
A(0, k) = 1. A(n, k) = Sum_{r=1..n where r/gcd(r, k) divides n} Sum_{c as each composition of n/(r/gcd(r, k)) into gcd(r, k) parts} Product_{i as each composant of c} A(i-1, lcm(r, k))
MAPLE
with(combinat, composition); # composition(n, k) gives ordered partitions of integer n into k parts.
[seq(A079216(n), n=0..119)]; A079216 := n -> A079216bi(A025581(n), A002262(n)+1);
A079216bi := proc(n, k) option remember; local r; if(0 = n) then RETURN(1); else RETURN(add(PFixedByA057511(n, k, r), r=1..n)); fi; end;
PFixedByA057511 := proc(n, k, r) option remember; local ncycles, cyclen, i, c; ncycles := igcd(r, k); cyclen := r/ncycles; if(0 <> (n mod cyclen)) then RETURN(0); else add(mul(A079216bi(i-1, ilcm(r, k)), i=c), c=composition(n/cyclen, ncycles)); fi; end;
CROSSREFS
A(n, A003418(n)) = A000108(n). The first row: A057546, second: A079223, third: A079224, fourth: A079225, fifth: A079226, sixth: A079227. Cf. also A079217-A079222.
Sequence in context: A168396 A049286 A308477 * A181654 A374757 A323756
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen Jan 03 2002
STATUS
approved