OFFSET
0,2
COMMENTS
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 9, Eq. 17.
LINKS
N. Cakic, D. Letic, and B. Davidovic, The Hyperspherical functions of a derivative, Abstr. Appl. Anal. (2010).
Dusko Letic, Nenad Cakic, Branko Davidovic and Ivana Berkovic, Orthogonal and diagonal dimension fluxes of hyperspherical function, Advances in Difference Equations 2012, 2012:22. - From N. J. A. Sloane, Sep 04 2012
Eric Weisstein's World of Mathematics, Hypersphere
Eric Weisstein's World of Mathematics, Ball
Eric Weisstein's World of Mathematics, Four-Dimensional Geometry
Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).
FORMULA
1 if n even, 2^((n+1)/2) if n odd.
a(n) = 3*a(n-2)-2*a(n-4). G.f.: (1+2*x-2*x^2-2*x^3)/((1-x)*(1+x)*(1-2*x^2)). [Colin Barker, Sep 04 2012]
a(n) = 2^((n+1)/2)*(1-(-1)^n)/2+(1+(-1)^n)/2. - Wesley Ivan Hurt, Jan 10 2017
E.g.f.: sqrt(2)*sinh(sqrt(2)*x) + cosh(x). - Ilya Gutkovskiy, Mar 16 2017
EXAMPLE
Sequence of C_n's begins 1, 2, 1, 4/3, 1/2, 8/15, 1/6, 16/105, 1/24, 32/945, 1/120, 64/10395, ...
MAPLE
seq(seq(k^n, k=1..2), n=1..28); # Zerinvary Lajos, Jun 29 2007
MATHEMATICA
f[n_] := Pi^(n/2 - Floor[n/2])/(n/2)!; Table[ Numerator[ f[n]], {n, 0, 55} ]
Riffle[2^Range[30], 1, {1, -1, 2}] (* or *) LinearRecurrence[{0, 3, 0, -2}, {1, 2, 1, 4}, 60] (* Harvey P. Dale, Oct 16 2013 *)
CoefficientList[ Series[(-2x^3 - 2x^2 + 2x + 1)/(2x^4 - 3x^2 + 1), {x, 0, 56}],
x] (* Robert G. Wilson v, Jul 31 2018 *)
PROG
(Magma) [2^((n+1) div 2)*(1-(-1)^n)/2+(1+(-1)^n)/2 : n in [0..100]]; // Wesley Ivan Hurt, Jan 10 2017
(Python)
def A072345(n): return 2<<(n>>1) if n&1 else 1 # Chai Wah Wu, Sep 24 2024
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
N. J. A. Sloane, Jul 31 2002
STATUS
approved