OFFSET
0,13
COMMENTS
Triangle T(n,k), 0<=k<=n, read by rows given by: [1,0,-1,0,0,0,0,0,...]DELTA[1,-2,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Sep 22 2008
The production matrix for this array has bivariate e.g.f. equal to exp(-t*x)*(1-t). - Paul Barry, Nov 22 2008
The elements of the matrix inverse are apparently T^(-1)(n,k) = (-1)^(n+k)*T(n,k). - R. J. Mathar, Apr 08 2013
Row sums give A130706. - Philippe Deléham, Oct 21 2013
LINKS
E. Burlachenko, Fractal generalized Pascal matrices, arXiv:1612.00970 [math.NT], 2016. See p. 3.
FORMULA
T(n, k) = -T(n-2, k-2) + T(n-2, k). T(0, 0) = T(1, 0) = T(1, 1) = 1.
T(n,k) = T(n-1,k) + (-1)^(n-1)*T(n-1,k-1), T(0,0)=1. - Jose Ramon Real, Nov 10 2007
G.f.: (1+x+x*y)/(1-x^2+x^2*y^2). - Philippe Deléham, Oct 21 2013
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, -1;
1, 1, -1, -1;
1, 0, -2, 0, 1;
1, 1, -2, -2, 1, 1;
...
MAPLE
A051160 := proc(n, k)
(1-x)^floor(n/2)*(1+x)^ceil(n/2) ;
coeftayl(%, x=0, k) ;
end proc: # R. J. Mathar, Apr 08 2013
MATHEMATICA
t[n_, k_] := Coefficient[(1-x)^Floor[n/2]*(1+x)^Ceiling[n/2], x, k]; Table[t[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 09 2014 *)
PROG
(PARI) {T(n, k) = polcoeff( (1 - x)^(n\2) * (1 + x)^ceil(n/2), k)}
CROSSREFS
KEYWORD
AUTHOR
Michael Somos, Oct 14 1999
STATUS
approved