OFFSET
0,5
COMMENTS
From Antti Karttunen: this is also a version of A003188: a(n) = A003188(n) - 2^floor(log_2(A003188(n))), that is, the corresponding Gray code expansion, but with highest 1-bit turned off. Also a(n) = A003188(n) - 2^floor(log_2(n)).
From John W. Layman: {a(n)} is a self-similar sequence under Kimberling's "upper-trimming" operation.
REFERENCES
Hsien-Kuei Hwang, S Janson, TH Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, Preprint, 2016; http://140.109.74.92/hk/wp-content/files/2016/12/aat-hhrr-1.pdf. Also Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, 13:4 (2017), #47; DOI: 10.1145/3127585
LINKS
T. D. Noe, Table of n, a(n) for n = 0..4096
Clark Kimberling, Fractal sequences.
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625 [math.CO], 2020-2021.
J. W. Layman, View the fractal-like graph of a(n) vs. n.
Ralf Stephan, Some divide-and-conquer sequences ....
Ralf Stephan, Table of generating functions.
FORMULA
If 2*2^k <= n < 3*2^k then a(n) = 2^k + a(2^(k+2)-n-1); if 3*2^k <= n < 4*2^k then a(n) = a(n-2^(k+1)). - Henry Bottomley, May 11 2000
G.f.: (1/(1-x)) * Sum_{k>=0} 2^k*(t^4-t^3+t^2)/(1+t^2), t=x^2^k. - Ralf Stephan, Sep 10 2003
a(0)=0, a(2n) = 2*a(n) + [n odd], a(2n+1) = 2*a(n) + [n>0 even]. - Ralf Stephan, Oct 20 2003
a(0) = a(1) = 0, a(4n) = 2*a(2n), a(4n+2) = 2*a(2n+1)+1, a(4n+1) = 2*a(2n)+1, a(4n+3) = 2*a(2n+1). Proof by Nikolaus Meyberg following a conjecture by Ralf Stephan.
EXAMPLE
If n = 18 = 10010_2, derivative is (1+0)(0+0)(0+1)(1+0) = 1011_2, so a(18)=11.
MAPLE
MATHEMATICA
a[0] = a[1] = 0; a[n_ /; Mod[n, 4] == 0] := a[n] = 2*a[n/2]; a[n_ /; Mod[n, 4] == 1] := a[n] = 2*a[(n-1)/2] + 1; a[n_ /; Mod[n, 4] == 2] := a[n] = 2*a[n/2] + 1; a[n_ /; Mod[n, 4] == 3] := a[n] = 2*a[(n-1)/2]; Table[a[n], {n, 0, 81}] (* Jean-François Alcover, Jul 13 2012, after Ralf Stephan *)
Table[FromDigits[Mod[Total[#], 2]&/@Partition[IntegerDigits[n, 2], 2, 1], 2], {n, 0, 90}] (* Harvey P. Dale, Oct 27 2015 *)
PROG
(Haskell)
import Data.Bits (xor)
a038554 n = foldr (\d v -> v * 2 + d) 0 $ zipWith xor bs $ tail bs
where bs = a030308_row n
-- Reinhard Zumkeller, May 26 2013, Mar 06 2013
(PARI) a003188(n)=bitxor(n, n>>1);
a(n)=if(n<2, 0, a003188(n) - 2^logint(a003188(n), 2)); \\ Indranil Ghosh, Apr 26 2017
(Python)
import math
def a003188(n): return n^(n>>1)
def a(n): return 0 if n<2 else a003188(n) - 2**int(math.floor(math.log(a003188(n), 2))) # Indranil Ghosh, Apr 26 2017
CROSSREFS
KEYWORD
AUTHOR
EXTENSIONS
More terms from Erich Friedman
STATUS
approved