[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A036386
Number of prime powers (p^2, p^3, ...) <= 2^n.
10
0, 1, 2, 4, 7, 9, 13, 16, 20, 26, 31, 40, 50, 61, 78, 93, 119, 150, 189, 242, 310, 400, 525, 684, 900, 1190, 1581, 2117, 2836, 3807, 5136, 6948, 9425, 12811, 17437, 23788, 32517, 44512, 60971, 83640, 114899, 157948, 217336, 299360, 412635, 569193, 785753, 1085319, 1500140, 2074794, 2870849, 3974425, 5504966
OFFSET
1,3
FORMULA
a(n) = Sum_{j=2..n+1} pi(floor(2^(n/j))). The summation starts with squares(j=2); for arbitrary range (=y), the y^(1/j) argument has to be used.
EXAMPLE
The 9 prime powers not exceeding 64 are 4, 8, 9, 16, 25, 27, 32, 49, 64.
n = 25, a(25) = 900, pi(5792) + pi(322) + pi(76) + pi(32) + pi(17) + pi(11) + pi(8) + pi(6) + pi(5) + pi(4) + pi(4) + pi(3) + pi(3) + pi(3) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(2) + pi(1) = 760 + 66 + 21 + 11 + 7 + 5 + 4 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 0.
MATHEMATICA
f[n_] := Length@ Union@ Flatten@ Table[ Prime[j]^k, {k, 2, n + 1}, {j, PrimePi[2^(n/k)]}]; Array[f, 46] (* Robert G. Wilson v, Jul 08 2011 *)
PROG
(Python)
from sympy import primepi, integer_nthroot
def A036386(n):
m = 1<<n
return sum(primepi(integer_nthroot(m, j)[0]) for j in range(2, n+2)) # Chai Wah Wu, Jan 23 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Labos Elemer, May 07 2001
Terms a(47) and beyond from Hiroaki Yamanouchi, Nov 15 2016
STATUS
approved