[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A020806
Decimal expansion of 1/7.
36
1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2, 8, 5, 7, 1, 4, 2
OFFSET
0,2
COMMENTS
142857 and 999999 = 7*142857 are first and last Kaprekar numbers with six digits. Note a(n) + a(n+3) = 9. (142857^2 = 20408122449; 20408 + 122449 = 142857.) a(n)^2 = 1, 16, 4, 64, 25, 49, ... - Paul Curtz, Aug 24 2009
The constant 19 + 1/7 = 19.142857... is the Kirchhoff index of the Möbius ladder graph on v=8 vertices. The Laplacian matrix has the eigenvalues 4 (one time), 4-sqrt(2) (2 times), 4+sqrt(2) (2 times), 2 (2 times) and 0 (one time). Then the Kirchhoff index is v times the sum over the inverse, nonzero eigenvalues. - R. J. Mathar, Feb 13 2011
Decimal expansion of -99*(zeta(-5) + zeta(-9)) - 1. - Arkadiusz Wesolowski, Sep 15 2013
Also, decimal expansion of Sum_{i>0} 1/8^i. - Bruno Berselli, Jan 03 2014
The points whose coordinates are overlapping pairs of digits of this sequence, (1, 4), (4, 2), (2, 8), (8, 5), (5, 7) and (7, 1), all lie on one ellipse, with equation 19*x^2 + 36*x*y + 41*y^2 - 333*x - 531*y = -1638. Overlapping pairs of pairs of digits, (14, 28), (42, 85), (28, 57), (85, 71), (57, 14), (71, 42), also yield 6 points on one ellipse, with equation -165104*x^2 + 160804*x*y + 8385498*x - 41651*y^2 - 3836349*y = 7999600. (See book by Wells and MathWorld link.) - M. F. Hasler, Oct 25 2017
REFERENCES
H. Rademacher and O. Toeplitz, Von Zahlen und Figuren (Springer 1930, reprinted 1968), ch. 19, 'Die periodischen Dezimalbrüche'.
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers. Middlesex, England: Penguin Books, 1986.
LINKS
FORMULA
From Reinhard Zumkeller, Oct 06 2008: (Start)
A028416(1)=7; A002371(A049084(7)) = A002371(4) = 6.
a(n+6) = a(n), a(n+6/2) = 9 - a(n). (End)
From Colin Barker, Aug 14 2012: (Start)
a(n) = a(n-1) - a(n-3) + a(n-4) for n>3.
G.f.: (1+3*x-2*x^2+7*x^3) / ((1-x)*(1+x)*(1-x+x^2)). (End)
a(n) = A068028(n+2). - Zak Seidov, Mar 26 2015
a(n) = (27 - 11*cos(n*Pi) - 10*cos(n*Pi/3) - 6*sqrt(3)*sin(n*Pi/3))/6. - Wesley Ivan Hurt, Jun 28 2016
E.g.f.: (8*cosh(x) - exp(x/2)*(5*cos(sqrt(3)*x/2) + 3*sqrt(3)*sin(sqrt(3)*x/2)) + 19*sinh(x))/3. - Stefano Spezia, Dec 07 2024
EXAMPLE
0.142857142857142857...
MAPLE
Digits:=100: evalf(1/7); # Wesley Ivan Hurt, Jun 28 2016
MATHEMATICA
CoefficientList[Series[(1 + 3 x - 2 x^2 + 7 x^3) / ((1 - x) (1 + x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Mar 27 2015 *)
realDigitsRecip[7] (* The realDigitsRecip program is at A021200 *) (* Harvey P. Dale, Sep 18 2024 *)
PROG
(Magma) I:=[1, 4, 2, 8]; [n le 4 select I[n] else Self(n-1)-Self(n-3)+Self(n-4): n in [1..100]]; // Vincenzo Librandi, Mar 27 2015
(PARI) 1/7. \\ Charles R Greathouse IV, Sep 24 2015
(PARI) digits(10^99\7) \\ M. F. Hasler, Oct 25 2017
CROSSREFS
KEYWORD
nonn,cons,easy
STATUS
approved