OFFSET
0,1
COMMENTS
If we mark with * resp. ' the graphical representations which use more resp. less segments, we have the following variants:
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 65.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Nathaniel Johnston, Table of n, a(n) for n = 0..10000
Netnews group rec.puzzles, Frequently Asked Questions (FAQ) file, Instructions problem series.31, and Series Section solution series.31.
FORMULA
a(n) = a(floor(n/10)) + a(n mod 10) for n > 9. - Reinhard Zumkeller, Mar 15 2013
EXAMPLE
As depicted below, zero uses 6 segments, so a(0)=6.
_ _ _ _ _ _ _ _
| | | _| _| |_| |_ |_ | |_| |_|
|_| | |_ _| | _| |_| | |_| _|
.
[Edited by Jon E. Schoenfield, Jul 30 2017]
MAPLE
A006942 := proc(n) local d, dig, j, s: if(n=0)then return 6:fi: dig:=[6, 2, 5, 5, 4, 5, 6, 3, 7, 6]: d:=convert(n, base, 10): s:=0: for j from 1 to nops(d) do s:=s+dig[d[j]+1]: od: return s: end: seq(A006942(n), n=0..100); # Nathaniel Johnston, May 08 2011
MATHEMATICA
MapIndexed[ (f[First[#2] - 1] = #1)& , {6, 2, 5, 5, 4, 5, 6, 3, 7, 6}]; a[n_] := Plus @@ f /@ IntegerDigits[n]; Table[a[n], {n, 0, 76}] (* Jean-François Alcover, Sep 25 2012 *)
a[n_] := Plus @@ (IntegerDigits@ n /. {0 -> 6, 1 -> 2, 2 -> 5, 3 -> 5, 7 -> 3, 8 -> 7, 9 -> 6}); Array[a, 77, 0] (* Robert G. Wilson v, Jun 20 2018 *)
PROG
(Haskell)
a006942 n = a006942_list !! n
a006942_list = [6, 2, 5, 5, 4, 5, 6, 3, 7, 6] ++ f 10 where
f x = (a006942 x' + a006942 d) : f (x + 1)
where (x', d) = divMod x 10
-- Reinhard Zumkeller, Mar 15 2013
(PARI) a(n)=if(n==0, return(6)); my(d=digits(n), v=vector(10)); for(i=1, #d, v[d[i]+1]++); v*[6, 2, 5, 5, 4, 5, 6, 3, 7, 6]~ \\ Charles R Greathouse IV, Feb 05 2018
(Python)
def a(n): return sum([6, 2, 5, 5, 4, 5, 6, 3, 7, 6][int(d)] for d in str(n))
print([a(n) for n in range(77)]) # Michael S. Branicky, Jun 02 2021
CROSSREFS
KEYWORD
base,nonn,nice,easy
AUTHOR
EXTENSIONS
More terms from Matthew Conroy, Sep 13 2001
STATUS
approved