[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A005155
Number of degree sequences of n-node graphs.
(Formerly M1886)
2
1, 1, 2, 8, 54, 533, 6944, 111850, 2135740, 47003045, 1168832808, 32363244260, 986532609608, 32810811179569, 1181865951824800, 45823912079507918, 1902469319507438352, 84195282530581058825, 3956365033583165905568, 196716723188140236180160
OFFSET
0,3
COMMENTS
Given a simple graph, the degree sequence maps each vertex to the valence or degree of that vertex.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Problem 5.16.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..386 (first 101 terms from James Spahlinger)
R. Simion, Convex Polytopes and Enumeration, Adv. in Appl. Math. 18 (1997) pp. 149-180.
R. P. Stanley, A zonotope associated with graphical degree sequences, in Applied Geometry and Discrete Combinatorics. DIMACS Series in Discrete Math., Amer. Math. Soc., Vol. 4, pp. 555-570, 1991.
Kai Wang, Efficient Counting of Degree Sequences, arXiv:1604.04148 [math.CO], 2016, p. 2 and p. 13.
FORMULA
There is an explicit formula and e.g.f.
E.g.f.: (sqrt((1-LambertW(-x))/(1+LambertW(-x)))-LambertW(-x)/x)*exp(-LambertW(-x)^2/2)/2. - Vladeta Jovovic, Jun 21 2007
a(n) ~ Gamma(3/4) * n^(n-1/4) / (2^(3/4) * exp(1/2) * sqrt(Pi)) * (1 - 11*Pi/(24*Gamma(3/4)^2*sqrt(n))). - Vaclav Kotesovec, Jul 09 2013
EXAMPLE
1 + x + 2*x^2 + 8*x^3 + 54*x^4 + 533*x^5 + 6944*x^6 + 111850*x^7 + 2135740*x^8 + ...
a(3)=8 because we have: {0, 0, 0}, {0, 1, 1}, {1, 0, 1}, {1, 1, 0}, {1, 1, 2}, {1, 2, 1}, {2, 1, 1}, {2, 2, 2}. - Geoffrey Critzer, Aug 24 2016
MATHEMATICA
max = 18; w = ProductLog; f[x_] := (Sqrt[(1 - w[-x])/(1 + w[-x])] - w[-x]/x)*(Exp[-w[-x]^2/2]/ 2); CoefficientList[ Series[f[x], {x, 0, max}], x]*Range[0, max]! (* Jean-François Alcover, Dec 12 2011, after Vladeta Jovovic *)
PROG
(PARI) {a(n) = local(A, B, C); if( n<0, 0, A = sum( k=1, n, k^k * x^k / k!, x * O(x^n)); B = intformal( 1 + A); C = intformal( 1 / (1 - B)); n! * polcoeff( (1 + (1 - B) * sqrt(1 + 2*A)) / 2 * exp(C), n))} /* Michael Somos, Aug 19 2005 */
CROSSREFS
Cf. A004251 for graphs up to isomorphism.
Sequence in context: A375224 A365599 A199576 * A133316 A234301 A345249
KEYWORD
nonn,nice,easy
EXTENSIONS
Minor edits by Vaclav Kotesovec, Mar 31 2014
STATUS
approved