[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A004672
Theta series of extremal even unimodular lattice in dimension 48.
4
1, 0, 0, 52416000, 39007332000, 6609020221440, 437824977408000, 15173208925056000, 327259384199748000, 4913603518247424000, 55439899840480296960, 496425571825135680000, 3672747716246756784000
OFFSET
0,4
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.
LINKS
N. Elkies, Rational Lattices and their Theta Functions, Equation 8, 7-8.
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
FORMULA
G.f.: E4(q)^6 - 1440 * E4(q)^3 * Delta(q) + 125280 * Delta(q)^2 with E4(q) as in A004009 and Delta(q) as in A000594.
EXAMPLE
G.f.: 1 + 52416000*q^3 + 39007332000*q^4 + ...
PROG
(Sage)
e4 = eisenstein_series_qexp(4, 20, normalization = "integral");
delta = CuspForms(1, 12).0.q_expansion(20);
e4^6-1440*e4^3 *delta+125280*delta^2 # Andy Huchala, May 09 2021
CROSSREFS
Sequence in context: A015392 A211237 A105381 * A029824 A186596 A205180
KEYWORD
nonn
STATUS
approved