OFFSET
1,1
COMMENTS
Refers to the least number which is multiplicatively n-perfect, i.e. least number m the product of whose divisors equals m^n. - Lekraj Beedassy, Sep 18 2004
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 23.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..3300 (terms 1..1000 from T. D. Noe using A005179)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
FORMULA
Bisection of A005179(n). - Lekraj Beedassy, Sep 21 2004
MATHEMATICA
A = {#, DivisorSigma[0, #]}& /@ A005179;
a[n_] := SelectFirst[A, #[[2]] == 2n&][[1]];
a /@ Range[1000] (* Jean-François Alcover, Nov 10 2019 *)
mp[1, m_] := {{}}; mp[n_, 1] := {{}}; mp[n_?PrimeQ, m_] := If[m < n, {}, {{n}}]; mp[n_, m_] := Join @@ Table[Map[Prepend[#, d] &, mp[n/d, d]], {d, Select[Rest[Divisors[n]], # <= m &]}]; mp[n_] := mp[n, n]; Table[mulpar = mp[2*n] - 1; Min[Table[Product[Prime[s]^mulpar[[j, s]], {s, 1, Length[mulpar[[j]]]}], {j, 1, Length[mulpar]}]], {n, 1, 100}] (* Vaclav Kotesovec, Apr 04 2021 *)
PROG
(PARI) a(n)=my(k=2*n); while(numdiv(k)!=2*n, k++); k \\ Charles R Greathouse IV, Jun 23 2017
(Python)
from sympy import divisors
def a(n):
m = 4*n - 2
while len(divisors(m)) != 2*n: m += 1
return m
print([a(n) for n in range(1, 19)]) # Michael S. Branicky, Feb 06 2021
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Jud McCranie Oct 15 1997
STATUS
approved