[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A002127
MacMahon's generalized sum of divisors function.
(Formerly M2770 N1114)
6
1, 3, 9, 15, 30, 45, 67, 99, 135, 175, 231, 306, 354, 465, 540, 681, 765, 945, 1040, 1305, 1386, 1695, 1779, 2205, 2290, 2754, 2835, 3438, 3480, 4185, 4272, 5076, 5004, 6100, 5985, 7155, 7154, 8325, 8190, 9840, 9471, 11241, 11055, 12870, 12420, 14911
OFFSET
3,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
G. E. Andrews and S. C. F. Rose, MacMahon's sum-of-divisors functions, Chebyshev polynomials, and Quasi-modular forms, arXiv:1010.5769 [math.NT], 2010.
P. A. MacMahon, Divisors of numbers and their continuations in the theory of partitions, Proc. London Math. Soc., 19 (1921), 75-113; Coll. Papers II, pp. 303-341.
FORMULA
G.f.: (Sum_{k>=0} (-1)^k * (2*k + 1) * binomial( k+2, 4) * x^( k*(k+1) / 2 )) / (5 * Sum_{k>=0} (-1)^k * (2*k + 1) * x^( k*(k+1) / 2 )). - Michael Somos, Jan 10 2012
EXAMPLE
x^3 + 3*x^4 + 9*x^5 + 15*x^6 + 30*x^7 + 45*x^8 + 67*x^9 + 99*x^10 + ...
PROG
(PARI) {a(n) = if( n<1, 0, ( sigma( n, 3) - (2*n - 1) * sigma(n) ) / 8)} /* Michael Somos, Jan 10 2012 */
CROSSREFS
A diagonal of A060043.
Sequence in context: A056287 A375257 A099409 * A357764 A061810 A048701
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vladeta Jovovic, Nov 11 2001
STATUS
approved