[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A001979
Number of partitions of floor(7n/2) into n nonnegative integers each no more than 7.
(Formerly M3389 N1369)
3
1, 1, 4, 10, 24, 49, 94, 169, 289, 468, 734, 1117, 1656, 2385, 3370, 4672, 6375, 8550, 11322, 14800, 19138, 24460, 30982, 38882, 48417, 59779, 73316, 89291, 108108, 130053, 155646, 185258, 219489, 258735, 303748, 355034, 413442, 479500, 554256
OFFSET
0,3
COMMENTS
Also, the dimension of the vector space of homogeneous covariants of degree n for the binary form of degree 7. To calculate the dimension one uses the Sylvester-Cayley formula. - Leonid Bedratyuk, Dec 06 2006
In Cayley's terminology, this is the number of literal terms of degree n and of weight floor(7n/2) involving the letters a, b, c, d, e, f, g, h, having weights 0, 1, 2, 3, 4, 5, 6, 7 respectively. - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
REFERENCES
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Springer, T. A., Invariant theory, Lecture Notes in Mathematics, 585, Springer-Verlag, (1977).
Hilbert, D., Theory of algebraic invariants. Lectures. Cambridge University Press, (1993).
LINKS
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281.
A. Cayley, Numerical tables supplementary to second memoir on quantics, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 2, pp. 276-281. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (2, -1, 0, 1, -2, 2, -2, 2, -2, 1, 0, 0, 0, -2, 4, -4, 4, -3, 2, -1, 0, 1, -2, 3, -4, 4, -4, 2, 0, 0, 0, -1, 2, -2, 2, -2, 2, -1, 0, 1, -2, 1).
FORMULA
Coefficient of x^w*z^n in the expansion of 1/((1-z)(1-xz)(1-x^2z)(1-x^3z)(1-x^4z)(1-x^5z)(1-x^6z)(1-x^7z)), where w=floor(7n/2). - Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
G.f.: -(x^34 -x^33 +3*x^32 +3*x^31 +7*x^30 +12*x^29 +16*x^28 +28*x^27 +33*x^26 +46*x^25 +56*x^24 +73*x^23 +83*x^22 +90*x^21 +106*x^20 +109*x^19 +121*x^18 +110*x^17 +121*x^16 +109*x^15 +106*x^14 +90*x^13 +83*x^12 +73*x^11 +56*x^10 +46*x^9 +33*x^8 +28*x^7 +16*x^6 +12*x^5 +7*x^4 +3*x^3 +3*x^2 -x+1) / ((x^4-x^2+1) *(x^4+x^3+x^2+x+1) *(x^4-x^3+x^2-x+1) *(x^4+1) *(x^2+x+1)^2 *(x^2-x+1)^2 *(x^2+1)^3 *(x+1)^5 *(x-1)^7). - Alois P. Heinz, Jul 25 2015
MAPLE
a(n+1) = subs({x=1}, convert(series((product('1-x^i', 'i'=8..7+n)/product('1-x^k', 'k'=2..n)), x, trunc(7*n/2)+1), polynom)); # Leonid Bedratyuk, Dec 06 2006
PROG
(PARI) f=1/((1-z)*(1-x*z)*(1-x^2*z)*(1-x^3*z)*(1-x^4*z)*(1-x^5*z)*(1-x^6*z)*(1-x^7*z)); n=450; p=subst(subst(f, x, x+x*O(x^n)), z, z+z*O(z^n)); for(d=0, 60, w=floor(7*d/2); print1(polcoeff(polcoeff(p, w), d)", ")) \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
CROSSREFS
Cf. A001980.
Sequence in context: A058514 A182094 A291949 * A209970 A211392 A309777
KEYWORD
nonn,easy
EXTENSIONS
Better definition and more terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 17 2008
STATUS
approved