[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A000334
Number of 4-dimensional partitions of n.
(Formerly M3858 N1580)
11
1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Suresh Govindarajan, Table of n, a(n) for n = 1..40
A. O. L. Atkin, P. Bratley, I. G. McDonald and J. K. S. McKay, Some computations for m-dimensional partitions, Proc. Camb. Phil. Soc., 63 (1967), 1097-1100. [Annotated scanned copy], DOI
S. Balakrishnan, S. Govindarajan and N. S. Prabhakar, On the asymptotics of higher-dimensional partitions, arXiv:1105.6231 [cond-mat.stat-mech], 2011.
S. P. Naveen, On The Asymptotics of Some Counting Problems in Physics, Thesis, Bachelor of Technology, Department of Physics, Indian Institute of Technology, Madras, May 2011.
EXAMPLE
From Gus Wiseman, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
(((1))) (((2))) (((3)))
(((11))) (((21)))
(((1)(1))) (((111)))
(((1))((1))) (((2)(1)))
(((1)))(((1))) (((11)(1)))
(((2))((1)))
(((1)(1)(1)))
(((11))((1)))
(((2)))(((1)))
(((1)(1))((1)))
(((11)))(((1)))
(((1))((1))((1)))
(((1)(1)))(((1)))
(((1))((1)))(((1)))
(((1)))(((1)))(((1)))
(End)
MATHEMATICA
trans[x_]:=If[x=={}, {}, Transpose[x]];
levptns[n_, k_]:=If[k==1, IntegerPartitions[n], Join@@Table[Select[Tuples[levptns[#, k-1]&/@y], And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#, ConstantArray[n, k-1]]&/@#)])&], {y, IntegerPartitions[n]}]];
Table[Length[levptns[n, 4]], {n, 8}] (* Gus Wiseman, Jan 24 2019 *)
CROSSREFS
Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim).
Sequence in context: A373300 A158875 A022813 * A000335 A271180 A200465
KEYWORD
nonn,nice
EXTENSIONS
More terms from Sean A. Irvine, Nov 14 2010
STATUS
approved