OFFSET
1,2
COMMENTS
a(n) is the number of solutions to the inequality sum_{i=1,2,..} x_i^(1/2)<=n for unknowns 1<=x_1<x_2<x_3<x_4<.... - R. J. Mathar, Jul 03 2009
REFERENCES
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. K. Agarwala, F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216.
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
EXAMPLE
The 12 solutions for n=3 are 1^(1/2)<=3, 1^(1/2)+2^(1/2)<=3, 1^(1/2)+3^(1/2)<=3, 1^(1/2)+4^(1/2)<=3, 2^(1/2)<=3, 3^(1/2)<=3,...,8^(1/2)<=3 and 9^(1/2)<=3. - R. J. Mathar, Jul 03 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
3 more terms from R. J. Mathar, Jul 03 2009
More terms from Sean A. Irvine, Nov 11 2010
STATUS
approved