[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000503
a(n) = floor(tan(n)).
21
0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -226, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -76, -1, 0, 7, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -7, -1, 0, -46, -1, 0, 8, -1, 0, 3, -2, 0, 2, -2, 0, 1, -3, -1, 1, -4, -1, 0, -6, -1, 0, -33, -1, 0, 9, -1, 0, 3, -2, 0, 2, -2, 0, 1, -2, -1, 1, -3, -1, 0, -6, -1, 0, -26
OFFSET
0,3
COMMENTS
Every integer appears infinitely often. - Charles R Greathouse IV, Aug 06 2012
Does not satisfy Benford's law [Whyman et al., 2016]. - N. J. A. Sloane, Feb 12 2017
LINKS
David P. Bellamy, Jeffrey C. Lagarias, Felix Lazebnik, Proposed Problem: Large Values of Tan n
David P. Bellamy, Jeffrey C. Lagarias, Felix Lazebnik and Stephen M. Gagola, Jr., Large Values of Tangent: 10656, The American Mathematical Monthly, Vol. 106, No. 8 (Oct., 1999), pp. 782-784.
Daniel Forgues and Jon E. Schoenfield, Discussion of A000503
G. Whyman, N. Ohtori, E. Shulzinger, Ed. Bormashenko, Revisiting the Benford law: When the Benford-like distribution of leading digits in sets of numerical data is expectable?, Physica A: Statistical Mechanics and its Applications, 461 (2016), 595-601.
MAPLE
f := n->floor(evalf(tan(n)));
MATHEMATICA
Table[Floor[Tan[n]], {n, 0, 100}] (* Stefan Steinerberger, Apr 09 2006 *)
PROG
(PARI) a(n)=tan(n)\1 \\ Charles R Greathouse IV, Sep 04 2014
(Magma) [Floor(Tan(n)): n in [0..80]]; // Vincenzo Librandi, Jun 13 2015
KEYWORD
sign,easy,nice
EXTENSIONS
More terms from Stefan Steinerberger, Apr 09 2006
STATUS
approved