∞-Chern-Simons functionals Talk at *Higher Structures 2011, Göttingen*

Urs Schreiber

November 29, 2011

With

- Domenico Fiorenza
- Chris Rogers
- ► Hisham Sati
- Jim Stasheff

Details and references at

http://ncatlab.org/schreiber/show/differential+cohomology+in+a+cohesive+topos

Outline

Toy example: 1d U-Chern-Simons theory

General theory

Some examples

3d Spin-Chern-Simons theory

3d Dijkgraaf-Witten theory

4d Yetter model

4d nonabelian BF theory

7d String-Chern-Simons theory

(4k+3)d abelian Chern-Simons theory

AKSZ σ -models

Poisson σ -model

Courant σ -model

Closed string field theory

Motivating toy example:

1d U(n)-Chern-Simons theory

Let

$$\mathbf{H} = \operatorname{Sh}_2(\operatorname{SmthMfd})$$

be the 2-category of stacks on smooth manifolds; the *groupoid-valued presheaves*

$$\mathbf{H} \simeq L_W \text{Func}(\text{SmthMfd}^{\text{op}}, \text{Grpd})$$
.

after "simplicial localization" at $W = \{\text{stalkwise equivalences}\}.$

Example. The Lie groupoid

$$\mathbf{B}U(n) = \{* \xrightarrow{g} * | g \in C^{\infty}(-, U(n))\}$$

is the moduli stack of smooth unitary bundles:

$$\mathbf{H}(X, \mathbf{B}U(n)) \simeq \mathrm{VectBund}(X)$$
 (no quotient by equivalences).

The Lie groupoid homomorphism

$$\mathbf{c}_1 := \mathbf{B} \det : \mathbf{B} U(n) \to \mathbf{B} U(1)$$
.

is a smooth refinement of the first Chern-class:

VectBund
$$(X) \xrightarrow{\mathbf{c}_1}$$
 LineBund (X)

$$\downarrow \qquad \qquad \downarrow$$

$$[X, BU(n)] \xrightarrow{c_1} H^2(X, \mathbb{Z})$$

This has a differential refinement:

$$\mathbf{B}U(n)_{\mathrm{conn}} = \left\{ A \overset{g}{\longrightarrow} A^{g} \mid \begin{matrix} g \in C^{\infty}(-, U(n)) \\ A \in \Omega^{1}(-, \mathfrak{u}(n)) \end{matrix} \right.$$

the moduli stack of unitary connections

$$\mathbf{H}(X, \mathbf{B}U(n)_{\mathrm{conn}}) = \mathrm{VectBund}(X)_{\mathrm{conn}}$$

The differential refinement of c_1

$$\hat{\mathbf{c}}_1: \mathbf{B}U(n)_{\mathrm{conn}} \to \mathbf{B}U(1)_{\mathrm{conn}}$$

induces by holonomy \int_{Σ} over 1d Σ an action functional $S_{\mathbf{c}_1}$

$$\mathbf{H}(\Sigma, \mathbf{B}U(n)_{\mathrm{conn}}) \xrightarrow{\hat{\mathbf{c}}_1} \mathbf{H}(\Sigma, \mathbf{B}U(1)_{\mathrm{conn}})$$

$$\downarrow \int_{\Sigma} U(1)$$

on the moduli stack of gauge fields on Σ .

This is "1d U-Chern-Simons theory":

$$\exp(iS_{\mathbf{c}_1}): (A \in \Omega^1(\Sigma, \mathfrak{u}(n)))$$
$$\mapsto \exp(i\int_{\Sigma} \operatorname{tr} A)$$

"spectral action" (Connes), dimensional reduction of large-N gauge theory (e.g.hep-th/0605007).

Summary and outlook.

Generalize this story to

higher characteristic classes

by working with

higher smooth stacks.

Obtain

higher gauge theories of Chern-Simons type.

General theory

The collection of smooth ∞ -groupoids or smooth ∞ -stacks is

 $\mathbf{H} := L_{\mathbf{W}} \operatorname{Func}(\operatorname{SmthMfd}^{\operatorname{op}}, \operatorname{sSet}),$ the simplicial localization of simplicial presheaves at stalkwise weak homotopy equivalences.

This is *cohesive*: comes with an adjoint quadruple of derived functors

Lift through geometric realization is a **smooth refinement**.

Example. The Eilenberg-MacLane space $K(\mathbb{Z},n+1)$ has a smooth refinement by the moduli *n*-stack

$$\mathbf{B}^n U(1) \simeq \operatorname{DoldKan}(U(1)[n])$$
 of circle *n*-bundles (bundle $(n-1)$ -gerbes).

This has moreover a differential refinement to the moduli *n*-stack

$$\mathbf{B}^n U(1)_{\mathrm{conn}}$$

 \simeq

DoldKan (Deligne-Beilinson complex)

of circle *n*-bundles with connection.

∞-Chern-Simons functionals.

Given a

- ▶ smooth ∞ -group G;
- ▶ a characteristic class $c \in H^n(BG, \mathbb{Z})$
- ▶ a smooth refinement $\mathbf{c}: \mathbf{B}G \to \mathbf{B}^n U(1)$;
- a differential refinement

$$\hat{\mathbf{c}}: \mathbf{B}G_{\mathrm{conn}} \to \mathbf{B}^n U(1)_{\mathrm{conn}};$$

higher holonomy \int_{Σ} induces an ∞ -Chern-Simons functional $\exp(iS_c)$

$$\mathbf{H}(\Sigma, \mathbf{B}G_{\mathrm{conn}}) \xrightarrow{\hat{\mathbf{c}}} \mathbf{H}(\Sigma, \mathbf{B}^n U(1)_{\mathrm{conn}})$$

$$\downarrow^{\int_{\Sigma}} U(1)$$

Some Examples.

- 3d Chern-Simons theory
- 3d Dijkgraaf-Witten theory
- 4d Yetter model
- 4d BF-theory
- 7d String-Chern-Simons theory
- \blacktriangleright (4k+3)d abelian Chern-Simons theory
- \blacktriangleright AKSZ σ -models
 - Poisson σ-model
 - Courant σ -model
- Closed string field theory

3d Spin-Chern-Simons theory

The first Pontryagin class

$$\frac{1}{2} p_1 : B\mathrm{Spin} \to B^3 U(1) \simeq \mathbb{K}(\mathbb{Z},4)$$

has a unique (up to equivalence) smooth refinement

$$\frac{1}{2}\textbf{p}_1:\textbf{B}\mathrm{Spin}\to\textbf{B}^3U(1)$$

whose homotopy fiber is the smooth *String 2-group* (any of the existing models)

$$\mathbf{B}\mathrm{String} \to \mathbf{B}\mathrm{Spin} \overset{\frac{1}{2}\mathbf{p}_1}{\to} \mathbf{B}^3 U(1) \,.$$

$$\mathbf{H}(X,\mathbf{B}String) \longrightarrow \mathbf{H}(X,\mathbf{B}\mathrm{Spin}) \longrightarrow \mathbf{H}(X,\mathbf{B}^3 U(1)) \quad.$$

$$\mathsf{String} \text{ 2-bundle } \longrightarrow \mathsf{Spin} \text{ bundles } \longrightarrow \mathsf{Chern-Simons} \text{ 3-bundles}$$

This has a differential refinement

$$\frac{1}{2}\hat{\boldsymbol{p}}_1:\;\mathbf{B}\mathrm{Spin}_{\mathrm{conn}} \longrightarrow \mathbf{B}^3 U(1)_{\mathrm{conn}}$$

$$\mathbf{H}(X, \mathbf{B}\operatorname{String}_{\operatorname{conn}}) \xrightarrow{\frac{1}{2}\hat{\mathbf{p}}_1} \mathbf{H}(X, \mathbf{B}\operatorname{Spin}_{\operatorname{conn}}) \longrightarrow \mathbf{B}^3 U(1)_{\operatorname{conn}}$$

String 2-connection obstructing Chern-Simons 3-connections

The corresponding action functional is that of 3d Chern-Simons theory

$$\exp(iS_{\frac{1}{2}\mathbf{p}_{1}}): \ \mathbf{H}(\Sigma, \mathbf{B}\mathrm{Spin}_{\mathrm{conn}}) \longrightarrow \mathbf{H}(\Sigma, \mathbf{B}^{3}U(1)_{\mathrm{conn}}) \xrightarrow{\int_{\Sigma}} U(1)$$

$$A \mapsto \exp(i\int_{\Sigma} \langle A \wedge dA \rangle + \frac{2}{3}\langle A \wedge A \wedge A \rangle)$$

3d Dijkgraaf-Witten theory

For G a discrete group, morphisms

$$\alpha: \mathbf{B}G \to \mathbf{B}^n U(1)$$

are the same as ordinary group cocycles:

$$\pi_0 \mathbf{H}(BG, \mathbf{B}^n U(1)) \simeq H^n_{\mathrm{grp}}(G, U(1))$$
.

Field configurations: G-principal bundles. For n=3 the ∞ -Chern-Simons functional

$$\exp(iS_{lpha}): \mathbf{H}(\Sigma,\mathbf{B}G) o U(1)$$

is the action functional of Dijkgraaf-Witten theory:

$$(P \to \Sigma) \mapsto \langle [\Sigma], \alpha(P) \rangle$$
.

4d Yetter model

For G any discrete ∞ -group and $\alpha: \mathbf{B}G \to \mathbf{B}^n U(1)$ any n-cocycle, we get an n-dimensional analog of DW theory.

Let

$$G=(G_1 \rightarrow G_0)$$

be a *discrete* strict 2-group.

Field configurations: principal 2-bundles.

For

$$\alpha: \mathbf{B}G \to \mathbf{B}^4U(1)$$

a 4-cocycle, the ∞ -Chern-Simons functional $\exp(iS_{\alpha})$ produces the *Yetter model*.

4d nonabelian BF-theory

Let

$$\mathfrak{g}=(\mathfrak{g}_1 o\mathfrak{g}_0)$$

be a strict Lie 2-algebra (2-term dg Lie algebra) with \mathfrak{g}_0 of compact type. Let

$$\mathbf{B}G := \exp(\mathfrak{g})$$

be its universal ∞ -Lie integration. A field configuration

$$\phi: \Sigma \to \mathbf{B}G_{\mathrm{conn}}$$

is a 2-connection

$$\phi = (A \in \Omega^1(\Sigma, \mathfrak{g}_0); B \in \Omega^2(\Sigma, \mathfrak{g}_1))$$

There is canonical characteristic map

$$\mathbf{c} = \exp(\langle -, -
angle) : \exp(\mathfrak{g})_{\mathrm{conn}} o \mathbf{B}^4 \mathbb{R}_{\mathrm{conn}}$$

whose ∞ -Chern-Simons action functional is $(A, B) \mapsto$

$$\int_{\Sigma} \left(\langle F_A \wedge F_A \rangle - 2 \langle F_A \wedge \partial B \rangle + 2 \langle \partial B \wedge \partial B \rangle \right) .$$

topological YM + BF + cosmological constant.

7d String-Chern-Simons theory

(arXiv:1011.4735)

The second Pontryagin class

$$rac{1}{6} p_2 : B \operatorname{String} o B^7 U(1) \simeq \mathbb{K}(\mathbb{Z},8)$$

has a smooth refinement to higher moduli stacks

$$\frac{1}{6}\mathbf{p}_2: \mathbf{B}\mathrm{String} \to \mathbf{B}^7 U(1)$$

whose homotopy fiber is the smooth Fivebrane 6-group

$$\text{\bf B} \text{Fivebrane} \to \text{\bf B} \text{String} \overset{\frac{1}{6}\textbf{p}_2}{\to} \text{\bf B}^3 \textit{U}(1) \, .$$

$$\mathbf{H}(X, \mathbf{B}$$
Fivebrane) $\longrightarrow \mathbf{H}(X, \mathbf{B}$ String) $\longrightarrow \mathbf{H}(X, \mathbf{B}^7 U(1))$.

This has a differential refinement

$$\frac{1}{6}\hat{\mathbf{p}}_2: \mathbf{B}\mathrm{String}_{\mathrm{conn}} \longrightarrow \mathbf{B}^7 U(1)_{\mathrm{conn}}$$

$$\mathbf{H}(X,\mathbf{B}\mathrm{Fivebrane}_{\mathrm{conn}}) \xrightarrow{\frac{1}{6}\hat{\mathbf{p}}_2} \mathbf{H}(X,\mathbf{B}\mathrm{String}_{\mathrm{conn}}) \longrightarrow \mathbf{B}^7 U(1)_{\mathrm{conn}}$$

Fivebrane
6-connection
lifts

String
2-connections
7-connections

The corresponding action functional defines a 7d String-Chern-Simons theory

$$\exp(iS_{\frac{1}{6}\mathbf{p}_2}): \ \mathbf{H}(\Sigma, \mathbf{B}\operatorname{String}_{\operatorname{conn}}) \xrightarrow{\frac{1}{6}\hat{\mathbf{p}}_2} \mathbf{H}(\Sigma, \mathbf{B}^7 U(1)_{\operatorname{conn}}) \xrightarrow{\int_{\Sigma}} U(1)$$

This appears after anomaly cancellation in AdS_7/CFT_6 .

(4k + 3)d abelian Chern-Simons theory

For

$$G = \mathbf{B}^n U(1)$$

and

$$\mathbf{D}\mathbf{D}^2 = \mathbf{B}^{2k+1}U(1) \overset{(-)^{\cup 2}}{\to} \mathbf{B}^{4k+3}U(1)$$

the cup-square of the higher Dixmier-Douady class, the induced ∞ -Chern-Simons functional $\exp(iS_{DD^2})$ is abelian (4k+3)d Chern-Simons theory, locally given by

$$C_{2k+1}\mapsto \exp(i\int_{\Sigma}C\wedge dC).$$

For k = 1 this appears in 11d supergravity on AdS_7 .

AKSZ σ -models

A symplectic Lie n-algebroid is a Lie n-algebroid \mathfrak{a} equipped with binary non-degenerate invariant polynomial $\omega \in \Omega^2(\mathfrak{a})$.

- ightharpoonup n = 0 symplectic manifold;
- ▶ n = 2 Courant Lie 2-algebroid.

arXiv:1108.4378: There is a differential refinement

$$\exp(\omega) : \exp(\mathfrak{a})_{\text{conn}} \to \mathbf{B}^n \mathbb{R}_{\text{conn}}$$

and the induced ∞ -Chern-Simons functional is that of the AKSZ σ -model.

- ▶ Poisson σ -model;
- Courant σ -model.

Closed string field theory

For $(\mathfrak{g}, \{[-, \cdots, -]_k\}_k)$ an arbitrary L_{∞} -algebra, and $\langle -, - \rangle$ a binary invariant polynomial, the ∞ -Chern-Simons Lagrangian is

$$A \mapsto \langle A \wedge d_{\mathrm{dR}} A \rangle + \sum_{k=1}^{\infty} \frac{2}{(k+1)!} \langle A \wedge [A \wedge \cdots A]_k \rangle,$$

For $\mathfrak g$ the BRST complex of the closed bosonic string and $[-,\cdots,-]_k$ the string's k+1-point function, Zwiebach shows that that the Berezinian integral \int_{Σ} of this over three ghost modes is the action functional of *closed string field theory*.

For more details see

http://ncatlab.org/schreiber/show/
infinity-Chern-Simons+theory+--+examples
or section 4.6 in

http://ncatlab.org/schreiber/show/ differential+cohomology+in+a+cohesive+ topos

End.