STRAW: A Stress-Aware WL-Based Read Reclaim Technique
for High-Density NAND Flash-Based SSDs

Myoungjun Chun', Jaeyong Lee!, Inhyuk Choi', Jisung Park?, Myungsuk Kim?, Jihong Kim'
!Seoul National University, 2POSTECH, *Kyungpook National University

[. INTRODUCTION

In NAND flash memory, read disturbance is the phenomenon in
which a read operation to the target wordline (WL) disturbs non-target
WLs in the same block. Although read disturbance has emerged as
a major reliability concern, managing read disturbance in modern
NAND flash memory has not been thoroughly investigated yet. To
our knowledge, all prior works on read disturbance in the literature
are based on a simple SSD-management task, called read reclaim
(RR) [1]. When a block’s read count RC' (i.e., the number of page
reads to the block) exceeds a predefined threshold RCwmax, the SSD
controller triggers RR to eliminate read-disturbance-induced errors by
rewriting (copying) all valid pages in the block to other free pages.

In this work, we show that a conventional RR approach causes
prohibitive performance overhead to guarantee data reliability in
recent high-density 3D flash memory. In high-density 3D flash
memory, reading a page incurs significantly higher disturbance to the
target WL's exact neighbors compared to the other WLs in the same
block [2]. Such an asymmetry in read disturbance across WLs makes
the existing block-level RR extremely inefficient. For example, when
pages at the k-th WL WL, are read repeatedly, pages at WL,_1 and
WL 4+1 may lose their data at a much lower RC value over when
pages are randomly accessed over entire WL’s. Although the worst-
case access pattern (i.e., repeated reads for the same WL) may not
be likely in practice, the existing RR approach should handle such a
case safely, thus RCvax being set based on the worst-case pattern.

To mitigate RR overhead, we propose STRAW (STRess-Aware
WL-based read reclaim technique for high-density NAND flash-
based SSDs), a new WL-level RR technique for modern SSDs which
effectively minimizes unnecessary RR at low cost. The key idea of
STRAW is to keep track of the accumulated read-disturbance effect to
each WL and reclaim only truly necessary (heavily-disturbed) WLs.
To this end, we construct a read-disturbance model that can accurately
estimate the impact of a page read on the reliability of each non-target
WL in the same block. Our evaluation using the state-of-the-art SSD
simulator [3] shows that STRAW reduces RR-induced writes by 83.6%
compared to existing RR approaches with negligible space overhead.

II. MOTIVATION

Unlike in planar (2D) flash memory, where a page read disturbs all
non-target WLs in the block almost equally [1], the reliability impact
of read disturbance significantly varies across WLs in high-density
3D flash memory. Fig. 1 illustrates two key factors contributing to

BL, BL, BL,

AR AN
WL, v,

passL

559K

passL

v, passH
Ll d (b)
WL v,
passL

passH
7

NAND —i l l 0 500K 1000K

string Maximum # of tolerable reads

Fig. 1. Key factors for asymmetry in read disturbance across WLs.

Wordlines

passL

the read-disturbance variations. First, when reading a page, a high-
density 3D flash chip applies a higher V455 (VpassH, approximately
0.4V higher than Vpassr, [2]) to the two adjacent WLs compared
to the non-adjacent WLs (Fig. 1(a)). Based on the widely-known
Fowler—Nordheim (FN) tunneling equation, the impact of read dis-
turbance is exponentially proportional to Vjqss [1]. Consequently,
reading a page leads to a higher reliability impact on the data
stored in adjacent WLs [2]. Second, read-disturbance tolerance varies
significantly among WLs due to inherent process variations in high-
density 3D flash memory [4]. Fig. 1(b) shows the maximum tolerable
read counts for WLs within a block when the block’s pages are
accessed uniformly. As shown in Fig. 1(b), the worst WL in a block
can tolerate only 403K reads before data corruption, while the best
WL can reliably endure 559K additional reads.

Due to the heterogeneous reliability impact of read disturbance,
data loss can occur at significantly lower RC' values under worst-
case access patterns. For example, in the worst-case access pattern,
reading data stored in the most vulnerable WL can result in uncor-
rectable errors after only 54,560 block reads. In contrast, the same
block can tolerate up to 518,420 reliable reads under a sequential
access pattern. Consequently, block-level RR must conservatively set
RCwmax (54,560 in this example), leading to frequent and unnecessary
RR operations.

ITI. STRAW: STRESS-AWARE WL-BASED READ RECLAIM

To overcome the limitations of existing solutions, we propose
STRAW, which reclaims individual WLs only when necessary. To this
end, we develop (i) a new read-disturbance model that quantifies the
heterogeneous reliability impact of read disturbance (§I1I-A) and (ii) a
STRAW-enabled flash translation layer (FTL) that efficiently estimates
the actual read disturbance accumulated to each WL (§III-B) by
leveraging an approximate counting algorithm [5].

A. New Read-Disturbance Model

We develop a new read-disturbance model through comprehensive
characterization of 160 real 3D TLC flash chips from Samsung. Our
proposed model quantifies two key factors that contribute to the
heterogeneous disturbance impact on non-target WLs during a read
operation: (i) the inherent process variations across WLs [4] and (ii)
read-disturbance asymmetry between adjacent and non-adjacent WLs.

We derive a model with two key parameters for four groups,
Best, Good, Bad, and Worst, based on their initial RBER values:
(i) the effective maximum read count, £ RCymax, which denotes the
maximum number of reads the worst WL in a group can tolerate
from non-adjacent WL reads, and (ii) the disturbance rate <, which
quantifies the relative impact of adjacent WL reads compared to
non-adjacent WL reads. The proposed model allows for determining
whether a WL is heavily disturbed by using its current effective read
count, derived from the read counts of its adjacent and non-adjacent
WLs. Fig. 2 shows the parameters of the final model for the tested
flash chips under different PEC. For example, at 2K PEC, WLS

ERCy,x a ERCypy a ERCyyx o ERCyyx «

0 [1947K | 7.4 7.6 | 1391K| 7.8 | 1210K| 8.0

0.5K [1806K 7.7 7.9 1270K 8.0 1094K 8.3

v IK 1567K 7.9 8.2 1087K 8.4 922K 8.6
= 1.5K | 1310K 8.3 8.6 899K 8.8 749K 9.0
2K 933K 8.7 9.0 627K 9.2 518K 9.5
2.5K 539K 9.2 9.5 354K 9.7 288K 10.1
3K 111K 9.7 10.0 71K 10.3 58K 10.7

Good Bad Worst

Fig. 2. Final Model of RCyax and « under different PEC.

can tolerate 767K non-adjacent reads, and the disturbance rate « is
9.0, respectively.

B. STRAWFTL

We implement an STRAW-enabled FTL, called STRAWFTL, by
extending the conventional page-level FTL [3] with two key data
structures: (i) Read-reclaim Parameter Table (RPT) and (ii) Resource-
Efficient Counters (REC). The RPT is a table to store £ RCyax and
a for each PEC, which can be built through offline profiling of target
chips (Fig. 2). The REC is a set of per-block counters that keep tracks
the RC values of individual WLs within a block.

Fig. 3 illustrates how STRAWFTL estimates the accumulated
disturbance impact on individual WLs. For WL,;, which is located
in the i-th WL in the k-th block, it first looks up the RC' values of
WL;_1, WL;, WL;1, and BLK}, from the REC (@). Based on the
obtained RC values, STRAWFTL determines the number of reads to
adjacent and non-adjacent WLs of WL, (@). Then it queries the RPT
with the PEC of BLKj and the WL group to which WL; belongs
(®). STRAWFTL converts the number of reads to adjacent and non-
adjacent WLs of WL; into the ERC, using the disturbance rate «
from the query result (@). The remaining process is straightforward.
If the ERC of WL; (including the possible additional reads by the
next interval) exceeds £ RCyvax from the RPT, STRAWFTL identifies
WL; as a heavily-disturbed WL (@).

Whenever a page is read, STRAWFTL updates the REC for the
target block and WL. Every predefined interval (e.g., every 1K reads
to the block), STRAWFTL checks all valid WLs in the block to
determine whether the accumulated disturbance impact on any valid
WL exceeds the threshold or if there is a possibility it will exceed the
threshold by the next interval. For such WLs, STRAWFTL copies the
valid pages to free pages before the next interval, thereby preventing
read-disturbance-induced data corruption. If the block contains no
valid pages after the checking procedure, STRAWFTL erases the block
and resets all associated counters.

Overhead Optimization. To minimize the storage overhead of
per-WL counters, the REC incorporates the Space-Saving (SS) al-
gorithm [5], which efficiently estimates the frequency of elements
in a data stream using a limited number of counters. Due to the
limited number of counters, the estimated read counts by the REC
may introduce some error, but SS ensures that the estimated count
value for any element is never underestimated [5]. This guarantees
that errors in estimation do not result in read-disturbance-induced
data corruption, although they may cause premature RR invocations.

RC[adj] = RC[WL, ,] + RC[WI,,] = 67l<
WL, | 16K | @ RC[non-adj] = RC[BLK] - RC[WL] Best | 1806K | 7.7
ﬂ WL, 5K -RC[WL,,] - RC[WL,,,] = 872K 05K Good | 1521K | 7.9 e
WL, | 51K ERC[WL, . Bad | 1270K | 8.0
O = x RC[adj] + RC[non-adj] Worst | 1094K | 8.3
Read-reclaim

ERC[WL] + a X itv. > ERCy;sx?
Resource-Efficient © 1401K + 8K > 1521K?

Counter (REC)
Fig. 3. A procedure for identifying heavily-disturbed WLs in STRAW.

Parameter Table (RPT)

S «» 1.0 1K PEC 2K PEC

* -%) [PAGETYPE [STRAW-SS Wl STRAW-WL]

T8

2%

S @

E a0

S Z 0.0

z & U Aliy,q Aliy,, AlijggAliyoq Syn; Syn, Aliy,, Alij,, AlijggAli,yg, Syn; Syn,

Fig. 4. Comparison of RR-induced page copies under two PEC.
IV. EVALUATION

We evaluate the effectiveness of our proposal using MQSim-E [3],
a state-of-the-art SSD simulator. We extend MQSim-E to trigger RR
operations according to the read-disturbance characteristics observed
in our 19,200 tested blocks. We evaluate two synthetic workloads with
different I/O patterns, as well as four real-world workloads obtained
from Alicloud traces.

We compare four SSD configurations with different RR techniques,
BLOCK, PAGETYPE, STRAW-SS, and STRAW-WL. BLOCK is
our baseline SSD that employs block-level RR. PAGETYPE is
an SSD that adopts a state-of-the-art read-disturbance management
technique [6]. Unlike block-level RR, PAGETYPE classifies pages
within a block according to their page types (e.g., MSB, CSB, and
LSB pages in TLC flash memory) and migrates them based on their
vulnerability to read disturbance. Both STRAW-SS and STRAW-WL
are SSDs that implement STRAWFTL; however, STRAW-SS utilizes
the SS algorithms [5] for WL-level counters (32 counter entries for
a block), while STRAW-WL employs naive WL-level counters.

Fig. 4 compares the number of RR-induced page copies in four
SSD configurations, normalized to BLOCK, under two different
PECs. We make two observations. First, both STRAW-SS and
STRAW-WL significantly reduce the number of RR-induced page
copies compared to BLOCK, by preventing premature RR invocations.
For example, STRAW-SS (STRAW-WL) reduces the number of RR-
induced page copies over BLOCK by 83.8% (91.5%) on average at
2K PEC. Second, with significantly less space overhead, STRAW-SS
achieves efficiency comparable to STRAW-WL under random-read
patterns and remains competitive under sequential-read patterns.

In conclusion, we have proposed a new WL-level read reclaim
technique, STRAW, which significantly improves SSD lifetime and
performance by reducing the frequency of RR invocation. Unlike
block-level RR that performs RR at block granularity, STRAW iden-
tifies heavily-disturbed WLs within blocks and reclaims them in a
timely manner. Our evaluation results showed that STRAW effectively
enhances SSD lifetime and performance.

V. ORIGINAL PUBLICATION

M. Chun et al. 2024. STRAW: A Stress-Aware WL-Based
Read Reclaim Technique for High-Density NAND Flash-
Based SSDs. IEEE Computer Architecture Letters (IEEE CAL).
https://arxiv.org/abs/2501.02517

REFERENCES

[1] K. Ha et al., “An Integrated Approach for Managing Read Disturbs in
High-Density NAND Flash Memory,” IEEE TCAD, 2015.

[2] Q. Xiong et al., “Characterizing 3D Floating Gate NAND Flash: Obser-
vations, Analyses, and Implications,” ACM TOS, 2018.

[3] D. Lee et al., “MQSim-E: An Enterprise SSD Simulator,” [EEE CAL,
2022.

[4] Y. Shim et al., “Exploiting Process Similarity of 3D Flash Memory for
High Performance SSDs,” in MICRO, 2019.

[S] A. Metwally er al., “Efficient Computation of Frequent and Top-k
Elements in Data Streams,” in ICDT, 2005.

[6] S. Han et al., “Page Type-Aware Data Migration Technique for Read
Disturb Management of NAND Flash Memory,” IEEE TVLSI, 2023.

https://arxiv.org/abs/2501.02517

	Introduction
	Motivation
	blackStraw: Stress-Aware WL-Based Read Reclaim
	New Read-Disturbance Model
	StrawFTL

	Evaluation
	Original Publication
	References

