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As data volumes grow exponentially, the need for "data

lakehouse" [2, 4] solutions that enable complex queries on

exabytes of data is becoming acute. These systems store

vast amounts of immutable data in columnar formats like

Parquet [3] and leverage cloud object stores such as Ama-

zon S3 [1] for their flexibility, scalability, and cost-efficiency.

However, processing this data often leads to network bottle-

necks, particularly when large datasets must be transferred

over high-latency networks (e.g., WANs) for processing, as

storage is decoupled from compute resources and data is

geographically distributed. One way to alleviate this bottle-

neck is to reduce the amount of data transferred and only

ship the portions the application needs. Yet, with client-side

encryption, the entire dataset must be transferred to the

client before filtering can occur, as illustrated in Figure 1

(left), leading to performance inefficiencies [5, 10].

Pushing data filtering closer to storage can alleviate these

bottlenecks. Services like Amazon S3 Select [9] partially push

computations down, but cannot filter encrypted data without

the client’s key.

We introduce DPUF, a near-storage data filter using a Data
Processing Unit (DPU) as a secure enclave. A DPU is a pro-

grammable SoC with power-efficient cores, high-bandwidth

networking, and built-in accelerators [8], connected via PCIe

as a “Super SmartNIC.” It offers secure networking and com-

putational capabilities.

DPUs support secure boot and remote attestation to en-

sure that only verified software runs on the DPU. Physical

isolation and robust security features create a minimal attack

surface for processing sensitive data in the cloud.

By harnessing the DPU’s hardware accelerators for de-/re-

encryption and its compute cores for filtering, DPUF reduces

data movement, lowers latency, and preserves client-side

encryption, all while minimizing client resource usage as

shown in Figure 1 (right).

The key contributions of this paper are:

• DPUs for Data Filtering: We apply DPUs to near-

storage data filtering tasks and demonstrate how they

can offload and accelerate filtering operations.

• An Optimized Data Filtering Pipeline: We intro-

duce an optimized pipeline architecture within the

DPU that efficiently handles multiple stages of data

processing, from decryption to final output.
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Figure 1. In traditional data lake storage (left), entire en-

crypted objects are transferred to the client for filtering.With

DPUF(right), the DPU securely filters data close to storage,

sending only filtered data to the client.

• Efficient Task Management for Cryptographic
Operations: We detail how DPUF efficiently uses the

DPU’s cryptographic engine, addressing task schedul-

ing and memory management challenges to maximize

the decryption throughput.

• Seamless Integration with Existing Storage In-
frastructure: DPUF performs push down without

changing the S3 Select REST API.

The following sections briefly describe DPUF’s design and

present some evaluation results.

DPUF’s Design
DPUF accelerates client queries by securely filtering data

from large, encrypted datasets stored in cloud-based object

storage. By offloading data filtering tasks to the DPU, DPUF

minimizes the time and network resources required to ex-

tract valuable insights, especially for clients operating over

bandwidth-limited networks. Like Amazon S3 Select, DPUF

is designed for single-object queries, processing one file (or

object; we use the terms interchangeably) per request.

Figure 2 depicts the usage scenario that DPUF targets:

the client connects over a slow network (e.g., a WAN) to a

cloud server equipped with a DPU. The cloud server hosts

large encrypted objects that the client needs to access, but

downloading the entire dataset for client-side filtering would

be inefficient. Instead, the client submits filtering requests

to DPUF, which processes the data on the DPU and returns
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POST /filter/bucket/Object.parquet
Host: dpuf.com
Authorization: Authorization string
{
   "ExpressionType": "SQL", 
     "Expression": "SELECT * FROM S3Object WHERE condition"     
     "OutputSerialization": "Parquet"
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Figure 2. Overview of DPUF . The client submits an

HTTP(S) POST request to the DPU, which retrieves en-

crypted data from cloud-based object storage, filters the data

based on the client’s query, and returns the results.

the results, reducing the overhead of data transfer and the

computational burden on the client.

To address the challenges, DPUF implements a pipeline

that breaks the data filtering process into modules, such as

data retrieval, decryption, filtering and repackaging. This

design optimizes resource usage and ensures efficient data

flow throughout the pipeline.

DPUF uses a DPU’s ARM cores and cryptographic accel-

erator to decrypt and filter data, sending only the filtered

results back to clients. This approach preserves confidential-

ity, leveraging the DPU as a trusted enclave and managing

cryptographic keys internally.

DPUF works with any S3-compatible storage by exposing

the DPU’s IP as an endpoint for SQL-based filter requests

via HTTP(S) POST. Clients specify filtering conditions using

SELECT statements with FROM, WHERE, and LIMIT clauses,

retrieving just the needed data instead of entire objects.

Upon receiving a request, DPUF extracts the object name,

query, and credentials, then retrieves the encrypted object

from storage. The DPU decrypts the data using its crypto

engine, applies the query, and sends the filtered results to

the client.

However, DPUs have limited compute and memory re-

sources. The cryptographic engine accelerates decryption

but requires buffer mappings that introduce overhead when

repeated frequently. To address these issues, DPUF imple-

ments a pipeline for data retrieval, decryption, filtering, and

repackaging—optimizing resource usage and ensuring effi-

cient data flow.

Evaluation
In this section, we evaluate the performance of DPUF against

traditional client-side filtering for encrypted data and S3 Se-

lect for unencrypted data. Our primary focus is to understand

how DPUF accelerates query latency, reduces data transfer,

and minimizes network cost.

Figure 2 illustrates our system for testing DPUF, featuring

a server with a DPU and a client connected over a slow

network. The server is hosted on an x86 machine running

MinIO [7], an open-source, high-performance object storage

system compatible with S3 APIs, which serves Parquet files
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Figure 3. Query latency across different fragments of the

TPC-DS web_sales table ordered by decreasing selectivity

ratio. Latency are presented on a logarithmic scale to high-

light the significant differences in performance.

as objects. The server and client are equipped with dual

24-core Intel Cascade Lake processors and 192 GB of DRAM.

DPUF’s main benefit is in reducing bandwidth consump-

tion and query latency. The benefits it provides grow the

selectivity of the query. Figure 3 shows the query latency us-

ing all scan fragments from the web_sales table of 742 MB,

ordered by selectivity ratio ranging from 40% to 0.001%. The

evaluations were performed over a 400 Mbps link between

the client and the server. DPUF shows 452× speedup in av-

erage ranging from 2× to 2322× across the queries.

For most queries, the relevant data represents only a small

subset of the entire object, and DPUF is most effective when

the relevant subset is under 20% of the original data. This ob-

servation aligns with studies of analytics workloads, which

show that applications typically use only 20% of the data

they retrieve, leading to substantial inefficiencies in data

transfer [6].

We have also evaluated DPUF’s performance sensitivity

to link bandwidth, explored the details of where time goes

during processing, and examined the cost savings due to

reduced network traffic.
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