
STRUCTURED COSPANS AND
OPEN PETRI NETS

John Baez, Kenny Courser, Jade Master
9 April 2020



•

••

•

•

••

•

•

•

When we run a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a finite set of places ,
a finite set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.



•

••

•

•

••

•

•

•

When we run a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a finite set of places ,
a finite set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.



•

••

•

•

••

•

•

•

When we run a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a finite set of places ,
a finite set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.



•

••

•

•

••

•

•

•

When we run a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a finite set of places ,
a finite set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.



•

••

•

•

••

•

•

•

When we run a Petri net, we start by placing a finite number of
tokens in each place. This is called a marking. Then we can
repeatedly move the tokens using the transitions.

A Petri net has:

a finite set of places ,
a finite set of transitions ,
a natural number of edges from each place to each transition,
a natural number of edges from each transition to each place.



Mathematically, a Petri net is a diagram like this:

T N[S]
s

t

where S and T are sets, and N[S] is the set of markings:
formal finite sums of elements of S.

More mathematically, N[S] is the underlying set of the free
commutative monoid on S:

Set CommMona

J

K

N = K ◦ J



Any Petri net gives a symmetric monoidal category where the
objects are markings and the morphisms are generated by
transitions.

•

•

•

•• → •

••

What kind of symmetric monoidal category do we get? A
commutative monoidal category!



A commutative monoidal category is a category in
CommMon.

Equivalently, it’s a symmetric monoidal category where the
I braidings βx ,y : x ⊗ y → y ⊗ x
I associators αx ,y ,z : (x ⊗ y) ⊗ z → x ⊗ (y ⊗ z), and
I left and right unitors λx : I ⊗ x → x , ρx : x ⊗ I → x

are all identity morphisms.



Any Petri net P gives a commutative monoidal category FP for
which:

I objects are markings of P;
I morphisms are generated from transitions of T by

composition and tensor product, subject to the laws of a
commutative monoidal category.

FP is the free commutative monoidal category on the Petri net
P, in the following sense.



There’s a category Petri, where:
I an object is a Petri net;
I a morphism from s, t : T → N[S] to s′, t ′ : T → N[S′] is a

pair of functions f : T → T ′,g : S → S′ such that these
diagrams commute:

T

f
��

s // N[S]

N[g]
��

T ′
s′
// N[S′]

T

f
��

t // N[S]

N[g]
��

T ′
t ′
// N[S′]



A morphism of Petri nets:

↓



There’s also a category CMC of commutative monoidal
categories, where:

I objects are commutative monoidal categories;
I morphisms are strict monoidal functors (automatically

symmetric).



Theorem (Jade Master)
There are adjoint functors

Petri CMCa

F

U

with F sending the Petri net P to the free commutative
monoidal category FP described earlier.

Figuring out the right adjoint U is not as easy as you might
think:

I Jade Master, Generalized Petri nets, arXiv:1904.09091

https://arxiv.org/abs/1904.09091


The functor F : Petri→ CMC provides an ‘operational
semantics’ for Petri nets: it describes a Petri net’s behavior.

Can we make this operational semantics compositional?

We can build Petri nets from pieces called ‘open’ Petri nets:

a b

Can we compute a Petri net’s behavior from the behavior of its
pieces?



We can compose two open Petri nets:

a cb

by identifying the outputs of the first with the inputs of the
second:

a c



We can also tensor open Petri nets:

a b a′ b′

by setting them side by side:

a + a′ b + b′



This suggests there’s a symmetric monoidal category with open
Petri nets as morphisms. And that’s almost true!

There are also 2-morphisms between open Petri nets:

⇓

and composition of open Petri nets is only associative up to
2-isomorphism.



So, there’s really a symmetric monoidal double category with
open Petri nets as ‘horizontal 1-cells’.

A double category has figures like this:

A B

C D

⇓ α

M

f g

N

So, it has:
I objects such as A,B,C,D,
I vertical 1-morphisms such as f and g,
I horizontal 1-cells such as M and N,
I 2-morphisms such as α.



2-morphisms can be composed vertically and horizontally, and
the interchange law holds:

A B

D E

⇓ α

B C

E F

⇓ β

D E

G H

⇓ α′
E F

H I

⇓ β′

M

f g

N

M ′

g h

N′

N

f ′ g′

O

N′

g′ h′

P

Vertical composition is strictly associative and unital, but
horizontal composition is weakly so.



Jade and I constructed a symmetric monoidal double category
with open Petri nets as horizontal 1-morphisms:

I JB and Jade Master, Open Petri nets, arXiv:1808.05415

We used the theory of structured cospans:

I JB and Kenny Courser, Structured cospans,
arXiv:1911.04630

I Kenny Courser, Open Systems: A Double Categorical
Perspective, tinyurl.com/courser-thesis

https://arxiv.org/abs/1808.05415
https://arxiv.org/abs/1911.04630
https://arxiv.org/abs/1911.04630
http://math.ucr.edu/home/baez/thesis_courser.pdf
http://math.ucr.edu/home/baez/thesis_courser.pdf


Given a functor
L : A→ X

a structured cospan is a diagram

L(a)

x

L(b)

i o



Theorem (Kenny Courser, JB)
Let A and X be categories with finite colimits, and
L : A→ X a left adjoint.

Then there is a symmetric monoidal double category LCsp(X)
where:
I an object is an object of A
I a vertical 1-morphism is a morphism of A

I a horizontal 1-cell is a structured cospan L(a)
i
→ x

o
← L(b)

I a 2-morphism is a commutative diagram

L(a) x L(b)

L(a′) x ′ L(b′)

i o

i ′ o′

L(f ) h L(g)



Horizontal composition is defined using pushouts in X;
composing these:

L(a) x L(b)

L(a′) x ′ L(b′)

L(b) y L(c)

L(b′) y ′ L(c′)

gives this:
L(a) x +L(b) y L(c)

L(a′) x ′ +L(b′) y ′ L(c′)

Vertical composition is straightforward.



Tensoring uses binary coproducts in both A and X, and the fact
that L : A→ X preserves these:

L(a1) L(b1)x1

L(a2) L(b2)x2

L(a′1) L(b′1)x ′1

L(a′2) L(b′2)x ′2

⊗

L(a1 + a′1) L(b1 + b′1)x1 + x ′1

L(a2 + a′2) L(b2 + b′2)x2 + x ′2

=



There’s a left adjoint functor

L : Set→ Petri

mapping any set to the Petri net with that set of places, and no
transitions. With this choice of L, a structured cospan is an
open Petri net:

a b

Set and Petri have colimits. We thus get a symmetric monoidal
double category Open(Petri) with open Petri nets as horizontal
1-morphisms!



We can compose our left adjoints:

Set L //

L′=F◦L ##

Petri

F
��

CMC

Since CMC also has colimits, the left adjoint

L′ : Set→ CMC

gives a symmetric monoidal double category Open(CMC) with
open commutative monoidal categories as horizontal 1-cells.



Theorem (JB, Kenny Courser)
Suppose A,X,X′ have finite colimits and there is a commuting
triangle of left adjoints

A L //

L′ ��

X

F
��

X′

Then there is a symmetric monoidal double functor

Csp(F ) : LCsp(X)→ L′Csp(X′)

that is the identity on objects and vertical morphisms, and acts
as follows on horizontal 1-cells and 2-morphisms:

L(a) i //

L(f )
��

x

α

��

L(b)ooo

L(g) 7→

��

L′(a)
F (i)

//

L′f
��

F (x)

F (α)
��

L′(b)
F (o)
oo

L′(g)
��

L(a′)
i ′
// x ′ L(b′)

o′
oo L′(a′)

F (i ′)
// F (x ′) L′(b′)

F (o′)
oo



So, our commuting triangle of left adjoints

Set L //

L′ ##

Petri

F
��

CMC

gives a symmetric monoidal double functor

Csp(F ) : Open(Petri)→ Open(CMC)

This says the operational semantics of Petri nets is
compositional!

We can compose open Petri nets and then turn them into open
commutative monoidal categories... or the other way around...
and we get isomorphic answers!



Besides the ‘operational’ semantics for open Petri nets, which
says how they behave, there is also a ‘reachability’ semantics,
which says what they accomplish.

In fact there are at least two approaches to this! I’ll present one
that’s not in my paper with Jade.

Given two markings x , y of a Petri net P, we say y is reachable
from x if there’s a morphism f : x → y in FP.

•• •• ••



If our Petri net P is

T N[S]
s

t

then its set of markings is N[S]. This becomes a poset where
x ≤ y iff y is reachable from x .

But N[S] also has the structure of a commutative monoid! It’s a
commutative monoidal poset since

x ≤ y & x ′ ≤ y ′ ⇒ x + x ′ ≤ y + y ′



There is a category CMP of commutative monoidal posets and
order-preserving homomorphisms, and a left adjoint

G : CMC→ CMP

that takes any commutative monoidal category and turns its set
of objects into a commutative monoidal poset where x ≤ y iff
there exists a morphism f : x → y .

Thus, we get a reachability semantics for open Petri nets by
composing these symmetric monoidal double functors:

Open(Petri) Open(CMC) Open(CMP)
Csp(F ) Csp(G)



In short:

I Each Petri net gives a commutative monoidal category.

I There’s a symmetric monoidal double category of open
Petri nets.

I Combining these ideas, we get the operational semantics
for open Petri nets.

I Turning commutative monoidal categories into
commutative monoidal posets, we get a reachability
semantics for open Petri nets.


