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A b s t r a c t  

Free fluid porosity and rock permeability, undoubtedly the most 
critical parameters of hydrocarbon reservoir, could be obtained by proc-
essing of nuclear magnetic resonance (NMR) log. Despite conventional 
well logs (CWLs), NMR logging is very expensive and time-consuming. 
Therefore, idea of synthesizing NMR log from CWLs would be of 
a great appeal among reservoir engineers. For this purpose, three optimi-
zation strategies are followed. Firstly, artificial neural network (ANN) is 
optimized by virtue of hybrid genetic algorithm-pattern search (GA-PS) 
technique, then fuzzy logic (FL) is optimized by means of GA-PS, and 
eventually an alternative condition expectation (ACE) model is con-
structed using the concept of committee machine to combine outputs of 
optimized and non-optimized FL and ANN models. Results indicated 
that optimization of traditional ANN and FL model using GA-PS tech-
nique significantly enhances their performances. Furthermore, the ACE 
committee of aforementioned models produces more accurate and reli-
able results compared with a singular model performing alone. 

Keywords: NMR, rock physics, petrophysics, integrated intelligent sys-
tems. 
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1. INTRODUCTION 
Nuclear magnetic resonance (NMR) log contains priceless information about 
the in situ characteristics of hydrocarbon-bearing intervals. Free fluid poros-
ity and permeability are two invaluable parameters of reservoir formations 
which could be determined by interpreting transverse relaxation time data 
(T2 distribution) of NMR log. NMR logging becomes impractical in cased-
hole wells and where insufficient deal of money and time exists. However, 
invaluable information obtained from NMR log has tempted several re-
searchers to devise quick, cheap, and practical methods of gaining NMR log 
parameters. Conventional well log data have been used by some researchers 
for synthesizing NMR log parameters through the use of intelligent systems 
(Mohaghegh 2000a, Malki and Baldwin 2002, Ogilvie et al. 2002, Labani et 
al. 2010). These methodologies enable reservoir engineers to extract free 
fluid porosity and permeability for both cased holes and open holes in a 
cheap and fast way. Since conventional well logs are cheap and available for 
almost all wells, many researchers are interested in extracting petrophysical, 
geomechanical, and geophysical properties from conventional well logs us-
ing intelligent systems (Kadkhodaie-Ilkhchi et al. 2009, Asoodeh and 
Bagheripour 2012a, 2013a; Asoodeh 2013, Bagheripour and Asoodeh 2013). 
A growing tendency among researchers has been emerged in recent years to 
utilized integrated approaches for enhancing accuracy of final prediction 
(Sharkey 1996, Chen and Lin 2006, Asoodeh et al. 2014a, b, Gholami et al. 
2013, Asoodeh and Bagheripour 2013b). However, no optimization on indi-
vidual intelligent systems has been done till now. In this study, artificial neu-
ral network (ANN) and fuzzy logic (FL) are optimized stochastically by 
means of hybrid genetic algorithm-pattern search (GA-PS) technique to es-
timate NMR log parameters. This strategy significantly enhances efficiencies 
of ANN and FL models. Owing to further increase in accuracy of final pre-
diction, an alternative condition expectation (ACE) committee with GA-PS 
optimized FL and ANN models is constructed. This model is capable of sat-
isfyingly improving accuracy of NMR log prediction using the concept of 
committee machine. Several papers have investigated performance of com-
mittee machine compared with individual intelligent systems performing 
alone (Asoodeh and Bagheripour 2013b, Afshar et al. 2014, Asoodeh and 
Kazemi 2013). The proposed strategy was applied in one of Iranian hydro-
carbon fields with carbonate reservoir formations. A satisfying improvement 
was observed in accuracy of predicted NMR parameters, including free fluid 
porosity and permeability after three-step optimization approach.  

2. METHODS 
This study follows a three-step strategy for formulating conventional well 
logs to NMR log parameters. The first step is devoted to optimization of arti- 



NMR  LOG  RECONSTRUCTION  THROUGH  AN  INTEGRATED  MODEL 
 

737 

Fig. 1. General flowchart followed in this study. 

ficial neural network (ANN) by means of hybrid genetic algorithm-pattern 
search (GA-PS) technique. Next, fuzzy logic (FL) model is optimized with 
GA-PS tool. Up to here, four models, including optimized FL, optimized 
ANN, non-optimized FL, and non-optimized ANN exist. In last stage of this 
study, an alternative condition expectation (ACE) committee of four models 
is constructed to combine their results. This step will reap benefits of all 
models and will enhance accuracy of final prediction. A flowchart of this 
study is provided in Fig. 1. 

2.1  Artificial neural network 
Artificial neural networks emulate the biological neural storage and analyti-
cal operations of brain through non-linear processing elements (neurons) 
connected by fixed (Lippmann 1987), variable (Barhen et al. 1989), or fuzzy 
(Gupta and Ding 1994) weights. Each neural network is made up of three 
layers (parallel arrangement of neurons): an input layer, one or more hidden 
layers depending on complexity of the problem, and an output layer. Back-
propagation is a popular learning method for neural networks. It requires 
a set of input/output training data to gain knowledge from them and then ap-
plying that knowledge to new situations and problems. This method per-
forms in a way that initial weights are randomly assigned to the neural 
network and its output is then calculated through random weights and biases. 
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Differences between neural network’s outputs and desired outputs are evalu-
ated and the obtained error is then propagated back to the neural network to 
adjust connection weights and biases. This process is conducted iteratively 
until network’s output locates in close proximity of desired output. 

2.2  Fuzzy logic 
The basic theory of fuzzy logic was proposed by Zadeh in 1965 as an exten-
sion of traditional Boolean logic (Zadeh 1965). A fuzzy set is characterized 
by a membership function which assigns to each object a grade of member-
ship ranging between zero and one (Zadeh 1965). The main part of fuzzy 
logic is the fuzzy inference system, which formulates inputs to an output. 
A fuzzy inference system consists of five major steps: fuzzification of input 
variables, application of fuzzy operators (AND, OR, and NOT) in the rule’s 
antecedent, implication from the antecedent to the consequent, aggregation 
of consequent across the rules, and defuzzification. These steps have been 
discussed in a number of papers (Mohaghegh 2000c, Kadkhodaie-Ilkhchi et 
al. 2006). In the Takagi Sugeno fuzzy inference system (the most popular 
type of fuzzy inference system), membership functions are defined by sub-
tractive clustering process, which divides the input-output data space into 
fuzzy clusters, each representing a specific part of the system behavior. Each 
membership function generates a set of fuzzy “if-then” rule for formulating 
inputs to output. The fuzzy system makes a sum of all “then” parts and uses 
a defuzzification method to give the final output. 

2.3  Hybrid genetic algorithm-pattern search technique 
Genetic algorithm is a stochastic global optimization tool which emulates the 
biological process of natural evolution for solving problems in widespread 
fields. It utilizes a specific terminology for optimization purpose, i.e., the 
function meant to optimize is called fitness function, the probable solutions 
of the function are called chromosomes, involved parameters in a solution 
are called genes, and mathematical functions which provide a stochastic 
generation of new solutions are called genetic operations. Genetic algorithm 
starts with a population of randomly generated chromosomes and evolves 
toward better chromosomes by applying genetic operators. This strategy 
provides a stochastic search capability for genetic algorithm. Evolutionary 
process by use of genetic operations continues until it finds the best chromo-
some (or solution) in which global minimum of fitness function has been oc-
curred. More description about genetic algorithm can be found in 
Mohaghegh (2000b). 

In the pattern search technique, the algorithm searches a set of points, 
called a mesh, around the current point (the point computed at the previous 
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step of the algorithm). The mesh is formed by adding the current point to a 
scalar multiple of a set of vectors called a pattern. If the pattern search algo-
rithm finds a point in the mesh that improves the objective function at the 
current point, the new point becomes the current point at the next step of the 
algorithm (MATLAB user’s guide; Mathworks 2011). 

2.4  Alternative condition expectation (ACE) 
Alternating conditional expectation (ACE) is a nonparametric method, which 
was first established by Breiman and Friedman (1985). ACE is robust data 
driven technique widely utilized for identifying the complicated relationship 
between independent variables and response variable, especially in the situa-
tion when there are no prior assumptions of functional form for expressing 
relation between input/output data space. This method seeks the optimal 
transformations of response and a set of predictor variables, thereby the 
maximal multiple correlation between independent variables and the re-
sponse variable is achieved. The optimal transformation is determined 
through minimizing the error variance between the transformed dependent 
variable and the sum of the transformed predicted variables. The value of er-
ror variance is minimized through employing of a series of single-function 
minimizations. Through iterative minimization of error variance, the optimal 
transformation of input and output is computed. Indeed, this method in-
volved two operations for solving regression problems including conditional 
expectation and iterative minimization process. This technique gained in-
creasing attention in both science and engineering fields due to its simplicity 
and its successful results in uncovering the nonlinearity relationship between 
dependent and independent variables (Malallah et al. 2006, Xue et al. 1996, 
Shokir 2007). For comprehensive study of ACE formulation principles, 
readers are referred to original paper of Breiman and Friedman (1985). In 
this study ACE is employed as nonlinear combiner to computing the contri-
bution of different predictive models in overall prediction.  

3. WHY  OPTIMIZATION  IS  NEEDED? 
3.1  For fuzzy logic 
Subtracting clustering is an effective approach for determining the number 
of rules in Takagi Sugeno fuzzy model (Al-Jarrah and Halawani 2001), 
which reduces computation compared with mountain clustering (Bataineh et 
al. 2011). However, it has the flaw of being affected by constant clustering 
radius. It means, by use of subtractive clustering, no modification is done 
over spread of Gaussian membership functions and all extracted membership 
functions have the same variance value. Furthermore, subtractive clustering 
looks for cluster centers among the data points; however, the actual cluster 
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centers are not necessarily located at one of data points (Bagheripour and 
Asoodeh 2013). These shortcomings of subtractive clustering entail to pro-
pose an alternative for setting up fuzzy rules and clusters. Stochastic optimi-
zation capability of hybrid genetic algorithm-pattern search tool provides a 
powerful search engine which is capable of finding optimal values of cluster 
centers and spreads, regardless of the above-mentioned limitations of sub-
tractive clustering.  

3.2  For artificial neural network 
As mentioned in Section 2.1, back-propagation algorithm is the widely-used 
method of determining connection weights. Performance of neural network 
is strongly dominated by initial weights and biases which are randomly as-
signed to it by back-propagation algorithm. It means, the final stage of con-
vergence depends on where the back-propagation algorithm starts from. In 
other words, several runs of back-propagation algorithm with similar initial 
condition will converge to the same minimum. By change of the initial con-
dition, final results of neural network might differ. Therefore, to find the op-
timal initial condition which leads to reaching global minimum, too many 
boring runs of back-propagation algorithm are needed. Nonetheless, during 
all these runs, neural network is highly at risk of trapping in local minima. 
Stochastic search capability of hybrid genetic algorithm-pattern search tool 
is independent of initial condition of its run. It will converge to global mini-
mum regardless from where it starts (Conn et al. 1991). Therefore, the use of 
hybrid genetic algorithm-pattern search tool instead of back-propagation al-
gorithm in the structure of neural network will improve the accuracy of 
modeling and eliminate the probability of sticking in local minima.  

4. INPUTS-OUTPUTS  DEPENDENCY 
The first criterion in modeling by intelligent system is the quality of data. 
Therefore, low quality data should be removed before modeling. For this 
purpose, a quality control was done and bad hole intervals were removed by 
processing of well log data. Existence of logical relationship between inputs 
and outputs is another important criterion which should be kept in mind 
while modeling. Introducing some input parameters which have no depend-
ency with outputs, makes the intelligent system confused and weakens the 
modeling. Outputs of this study are free fluid porosity and permeability. Free 
fluid porosity includes the pores containing fluids which are expected to 
flow. Permeability is defined as the capacity of a rock or sediment for fluid 
transmission, and is a measure of the relative ease of fluid flow under pres-
sure gradients. Therefore, conventional well logs that have an underlying 
dependency with these two parameters are desired. Inputs for prediction of 
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free fluid porosity and permeability are the same. Because, behavioral phys-
ics of free fluid porosity and permeability are completely intertwined. Free 
fluid porosity increases as permeability increases and vice versa. Available 
well logs for this study were including DT, RHOB, NPHI, RT, PEF, GR, and 
Caliper. Caliper log was firstly used to identify bad hole intervals where 
standoff is higher than 1.5 inches in 8.5� hole. Bad hole intervals were re-
moved because they contain erroneous recordings. Photoelectric factor 
(PEF) is a litho-log which determines composition of reservoir rocks. NMR 
log is independent of lithology. Therefore, PEF was not used as input. 
Gamma ray (GR) is an indicator of shale content. However, in unconven-
tional carbonate reservoirs, GR is contaminated by digenesis factors and is 
misleading. In this study, four conventional well logs, including sonic transit 
time (DT), bulk density (RHOB), neutron porosity (NPHI), and true forma-
tion resistivity (RT) were chosen as inputs. These are known appropriate in- 
 

Fig. 2. Crossplots showing relationship between conventional well log data and 
NMR log parameters, including free fluid porosity and permeability. 
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put logs having logical relationship with outputs, because the first three logs 
are porosity logs and the last one is attributed to fluid flow pass (tortuosity) 
(Asoodeh and Bagheripour 2012a). Figure 2 shows the logical dependency 
of chosen conventional well log data and nuclear magnetic resonance log pa-
rameters using the concept of correlation coefficient. Appendix provides 
conversion factors from field units to SI units for permeability and sonic 
transit time. Conventional well logs and NMR logs which have been used for 
both training and testing of models are originated from Asmari formation. 
Asmari formation is composed of fossilifrous limestone, dolomitic lime-
stone, argilious limestone, sandstone, and shale and constitutes the major 
reservoir rock for several carbonate oil fields of Iran. 

5. MODELING,  RESULTS,  AND  DISCUSSION 
5.1  Optimization of artificial neural network 
At the first stage, a three-layered structure of ANN was used for estimation 
of free fluid porosity and permeability from conventional well logs. This 
structure utilizes TANSIG and PURELIN transfer functions for its hidden 
and output neurons, correspondingly. TANSIG is mathematically equivalent 
to tangent hyperbolic function and PURELIN is a simple linear function of  
f(x) = x  (Asoodeh and Bagheripour 2012b). “Trainlm” training function was 
used for ANN to learn from training data (for more details about Trainlm re-
fer to Hagan and Menhaj (1994)). To achieve optimal number of hidden neu-
rons, different ANNs with different number of hidden neurons were con-
structed and performance of each was evaluated using mean square error 
function as shown in Fig. 3. Results showed that if seven and three nodes 
were inserted in the hidden layer of neural network for permeability and free 
fluid porosity, respectively, the highest performances are achieved. The con-
structed model was then evaluated by means of blind testing. A set of unseen 
well log data was used to assess performance of constructed ANN. Results 
showed that the correlation coefficient between predicted values using neural 
networks and NMR parameters was equal to 0.84 and 0.857 for permeability 
and free fluid porosity, respectively. Mean square error of prediction was 
equal to 0.73 [md2] and 0.000501 for permeability and free fluid porosity, 
correspondingly. In the next stage, the neural network is optimized through 
the search capability of hybrid genetic algorithm-pattern search tool. This 
procedure is discussed in the following paragraphs.  

Stochastic search capability of hybrid genetic algorithm-pattern search 
tool enables it to escape from local minima and converge to global mini-
mum. This feature of hybrid genetic algorithm-pattern search tool could be 
employed to eliminate the flaw of neural networks which use back-
propagation algorithm for finding their weights. To extract the optimum val- 
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Fig. 3. Graph showing the mean square error (MSE) performance of back-
propagation neural network in test data versus different number of nodes of hidden 
layer for: (a) permeability, and (b) free fluid porosity. Optimal models are achieved 
when 3 and 7 nodes are inserted in hidden layer of neural network for free fluid po-
rosity and permeability, respectively. 

ues of ANN’s weights, the following mean square error function was intro-
duced into hybrid genetic algorithm-pattern search tool: 

 � �2
O N N N M R O N N

1

1M S E O u tp u t O u tp u t ,
k

K �

� �� � �
�

 (1) 

where OestNN is ANN output. OutputONN is estimated values of nuclear mag-
netic resonance (NMR) log parameters from optimized neural network, Out-
putNMR is the NMR log parameter, MSEONN is the mean square error function 
of optimized neural network, and k is the number of training data. The proc-
ess of producing an output from neural network is discussed by Asoodeh and 
Bagheripour (2013c). Hybrid genetic algorithm-pattern search technique 
looks for optimum values of connection weights of ANN such that Eq. 1 
converges to its global minimum. Blue lines of Fig. 4 indicate mean value of 
mean square error (MSE)  for a population of chromosomes  (solutions)  dur- 
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Fig. 4. Run of hybrid genetic algorithm-pattern search tool for stochastic optimiza-
tion of neural network. This plot shows the best and mean fitness values of fitness 
functions after 300 generations for: (a) permeability and (b) free fluid porosity. 

ing 300 generations for permeability model and 200 generations for free 
fluid porosity (FFP) models. The red lines in Fig. 4 show mean square error 
corresponding to best chromosomes. After stochastic optimization of neural 
network, performances of optimized models were evaluated by test data, i.e., 
test data were introduced to optimized model and quality of estimation was 
assessed. Figure 5 indicates error distributions for optimized and non-
optimized neural network models. It is obvious that stochastic optimization 
of neural networks led mean of error distributions to approach zero and stan-
dard deviation of error distributions to decrease. Furthermore, correlation 
coefficient of prediction has improved after stochastic optimization of neural 
networks. 
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Fig. 5. Error distribution of: (a) optimized neural network for permeability, (b) non-
optimized neural network for permeability, (c) optimized neural network for free 
fluid porosity, and (d) non-optimized neural network for free fluid porosity. In opti-
mized models, the mean of error distributions approach zero and their standard devi-
ation decrease. It means, optimized models performed better than non-optimized 
models. 

5.2  Optimization of fuzzy logic 
The next stage of this study was initiated with construction of fuzzy model 
for estimation of nuclear magnetic resonance (NMR) log parameters, includ-
ing free fluid porosity and permeability from conventional well log data. To 
find optimum fuzzy model which best describes quantitative formulation be-
tween inputs and outputs, several fuzzy inference systems with various val-
ues of clustering radius were constructed. Fuzzy inference systems which 
have the lowest mean square error for the test data were chosen as optimal 
ones. Figure 6 indicates variations of mean square error for test and training 
data in conjugation with variation of number of rules for different clustering 
radii. This figure indicates fuzzy inference systems with clustering radii of 
0.6 and 0.9 for permeability and free fluid porosity, respectively, can extract 
the best quantitative relationship between inputs and outputs. Furthermore, 
this figure shows that four and two linguistic rules can in turn handle the re-
lationship between inputs and outputs for permeability and free fluid poros-
ity models. Figure 7 shows the extracted Gaussian membership functions  
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Fig. 6. Graphs showing the mean square error (MSE) performance of Takagi-Sugeno 
fuzzy inference system (TS-FIS) in test and training data in conjugation with num-
ber of rules versus clustering radius for: (a) permeability, and (b) free fluid porosity. 
Optimal models are achieved when 0.6 and 0.9 are chosen for clustering radius of 
permeability and free fluid porosity models, respectively. 

corresponding to aforementioned linguistic rules. As this figure shows, the 
subtractive clustering implies no optimization over variances (spreads) of 
fuzzy clusters corresponding to each input. This flaw is eliminated in next 
step. Evaluating with test data, the results showed that correlation coefficient 
between fuzzy logic predicted free fluid porosity and NMR values was equal 
to 0.852. This value for permeability was equal to 0.845. Mean square errors 
of fuzzy logic predictions are equal to 0.000521 and 0.7201 [md2] for free 
fluid porosity and permeability, correspondingly. 
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Fig. 7. TS-FIS generated Gaussian membership functions (fuzzy clusters) for the in-
puts of model meant to predict: (a) permeability, and (b) free fluid porosity. 

Since conventional well log data, which constitute input data space, cov-
er various ranges of data, all inputs were normalized to improve the perfor-
mance of search capability of hybrid genetic algorithm-pattern search tool 
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for optimizing fuzzy logic model. Since this type of normalization does not 
destroy the consistency of input data, shape of membership functions will 
just be scaled and normalization would not have any effect in the overall 
shape of membership functions. Similar to ANN, a mean square error (MSE) 
function was used as fitness function of hybrid genetic algorithm-pattern 
search to find optimal membership functions such that MSE function reaches 
its global minimum. Stochastic search capability of hybrid genetic algo-
rithm-pattern search tool makes it possible to optimize both mean and vari-
ance (spread) of input Gaussian membership functions along with 
optimization of output linear membership functions. Figure 8 shows results 
of hybrid genetic algorithm-pattern search runs for permeability and free 
fluid porosity. Extracted fuzzy Gaussian membership functions are illustrat-
ed in Fig. 9. A comparison between Figs. 7 and 9 shows that the proposed 
 

Fig. 8. Run of hybrid genetic algorithm-pattern search tool for stochastic optimiza-
tion of fuzzy logic. This plot shows the best and mean fitness values of fitness func-
tions after 300 generations for: (a) permeability, and (b) free fluid porosity. 
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Fig. 9. Stochastically generated Gaussian membership functions (fuzzy clusters) for 
the inputs of model meant to predict: (a) permeability, and (b) free fluid porosity. 
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Fig. 10. Error distribution of: (a) optimized fuzzy model for permeability, (b) non-
optimized fuzzy model for permeability, (c) optimized fuzzy model for free fluid po-
rosity, and (d) non-optimized fuzzy model for free fluid porosity. In optimized mod-
els, mean of error distributions approach to zero and their standard deviation 
decrease. It means, optimized models performed better than non-optimized models. 

model was capable of optimizing variances (spreads) of Gaussian member-
ship function in addition to optimizing mean of Gaussian membership func-
tions. Figure 10 illustrates error distributions of optimized and non-
optimized fuzzy logic models. It is obvious that stochastic optimization of 
fuzzy logic models has reduced the absolute mean and standard deviation of 
error distributions. Furthermore, correlation coefficient of prediction im-
proved after stochastic optimization of fuzzy logic models. 

5.3  ACE committee of models 
As mentioned previously, ACE is employed as a combiner to integrate out-
puts of different models and consequently reaping their benefits through 
constructing a more accurate model for estimating free fluid porosity and 
permeability. For this purpose, ACE transfers input parameters and target 
values into a desired space where maximum correlation exists between them. 
Thus, outputs of predictive models, including fuzzy logic, optimized fuzzy 
logic, neural network, and optimized neural network are employed as inputs 
of ACE and free fluid porosity and permeability are considered as ACE out- 
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Fig. 11. Optimal transformation of input parameters which determined by ACE for: 
(a) permeability, and (b) free fluid porosity. 

puts. Figure 11 demonstrates ACE extracted optimal transformation of input 
parameters for free fluid porosity and permeability, respectively. Although 
ACE algorithm approximates optimal transformations of input/output data 
space, it does not present a computational model for relating parameters and 
their optimal transformations. Hence, a simple polynomial function is fitted 
for making formulation between the parameters and their optimal transfor-
mations. The resulting polynomial functions with associated parameters for 
transforming neural network, optimized neural network, fuzzy logic, and op-
timized fuzzy logic are shown in Eqs. 2-9. 
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(a) Transformations for permeability modeling 

 * 2
2 1 0( ) ( ) ( ) ,NN a NN a NN a� � � �  (2) 

where  a2 = 0.034882108437520,  a1 = 0.0626864203614067, and   
a0 = –0.28077401469906. 

 * 3 2
3 2 1 0( ) ( ) ( ) ( ) ,FL a FL a FL a FL a� � � � �  (3) 

where  a3 = 0.001772160478232,  a2 = 0.016384002242114, 
a1 = 0.042023493356332,  and  a0 = –0.050567771173985. 

 *
1 0( ) ( ) ,ONN a ONN a� � �  (4) 

where  a1 = 0. 756690942653011,  and  a0 = –0.263928319591898. 

 * 3 2
3 2 1 0( ) ( ) ( ) ( ) ,OFL a OFL a OFL a OFL a� � � � �  (5) 

where  a3 = 0.007540599087205,  a2 = 0.034647276929447,  
a1 = –0.871553938494339,  and  a0 = 0.211074313346156. 
 

(b) Transformations for FFP modeling 

 *
1 0( ) ( ) ,NN a NN a� � �  (6) 

where  a1 = –1735498.432421821,  and  a0 = 122908.214346089. 

 * 4 3 2
4 3 2 1 0( ) ( ) ( ) ( ) ( ) ,FL a FL a FL a FL a FL a� � � � � �  (7) 

where  a4 = –1179.828742552175,  a3 = 244.364360922208, 
a2 = 18.984460901200,  a1 = –5.166180545100, and   
a0 = –0.050567771173985. 

 *
1 0( ) ( ) ,ONN a ONN a� � �  (8) 

where  a1 = –2324155.414675274,  and  a0 = 163629.816053569. 

 *
1 0( ) ( ) ,OFL a OFL a� � �  (9) 

where  a1 = 4013501.320037709,  and  a0 = –286489.622011131. 
Summations of optimal transformation of input parameters are as fol-

lows: 

 * * * * *( ( )) ( ) ( ) ( ) ( ) ,Log K NN FL ONN OFL� � � � �� � � �  (10) 

 * * * * *( ) ( ) ( ) ( ) ( ) .FFP NN FL ONN OFL� � � � �� � � �  (11) 
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Fig. 12. Relation between sum of transformed independent variables and: (a) perme-
ability, and (b) free fluid porosity determined by ACE. 

Figure 12 shows the relationship between permeability and free fluid po-
rosity and sum of optimal transformation of input parameters. A simple 
curve fitting can result in permeability and free fluid porosity through fol-
lowing equations. 

 � � � � � �3 2* * *
3 2 1 0( ) ( ( )) ( ( )) ( ( )) ,Log K a Log K a Log K a Log K a� � �� � � �  (12) 

where  a3 = 0.070938496352028,  a2 = –0.380116311467027,  
a1 = 1.466278287151171,  and  a0 = 0.727440481067394. 

 � � � � � �3 2* * *
3 2 1 0( ) ( ) ( ) ,FFP a FFP a FFP a FFP a� � �� � � �  (13) 

where  a3 = 0.003322744745387,  a2 = –0.007556364428498,  
a1 = 0.040164861128829,  and  a0 = 0.076864737700259. 
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Fig. 13. Crossplots showing correlation coefficient between measured and predicted: 
(a) free fluid porosity, and (b) log (K). 

After developing above formulation through the use of ACE method, 
performance of constructed model was assessed by means of test data. Fig-
ure 13 shows correlation coefficient between measured and predicted NMR 
parameters. This figure shows that the ACE model was capable of producing 
high accuracy results. For better illustration, results of ACE models are 
compared with individual models viz. neural network, fuzzy logic, optimized 
neural network, and optimized fuzzy logic in term of correlation coefficient 
and mean square error (Fig. 14). This figure shows that ACE is a good alter-
native for combining different models in order to enhance accuracy of final 
prediction. 
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Fig. 14. A comparison between different models versus correlation coefficient and 
mean square error. 

6. CONCLUSIONS 
In this study, a stochastic optimization tool, called hybrid genetic algorithm-
pattern search, was employed to strengthen fuzzy logic and artificial neural 
network. Strengthened models were then used to estimate nuclear magnetic 
resonance (NMR) log parameters, including free fluid porosity and rock 
permeability. At the final step of this study, an ACE committee with opti-
mized and non-optimized models was constructed. Some noticeable points 
deduced from this study can be expressed as follows: 
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� In spite of complex behavior of carbonate reservoirs, neural network and 
fuzzy logic are able to extract the formulation between conventional well 
log data and NMR log parameters, including free fluid porosity and per-
meability. 

� Performance of back-propagation neural network is greatly dominated by 
initial weights and biases which are randomly assigned to the neural net-
work. Furthermore, the back-propagation algorithm is highly at risk of 
trapping in local minima. 

� Fuzzy clustering is strongly governed by heterogeneity of training data. 
This flaw might result in non-smooth multi-dimensional formulation. 
Therefore, need of comprehensive training database is inevitable. 

� Subtractive clustering has just some control on means of Gaussian mem-
bership functions, i.e., no modification on variances (spread) of member-
ship functions is done by it. 

� Hybrid genetic algorithm-pattern search as a global optimization tool 
provides a stochastic search capability which is not affected by initial 
condition of algorithm run. It converges to global minimum regardless 
from where it starts. 

� Extracting optimal weights and biases of neural network through the use 
of stochastic search of hybrid genetic algorithm-pattern search tool is 
more confident and efficient than the use of back-propagation algorithm. 

� By extracting fuzzy formulation through the use hybrid genetic algo-
rithm-pattern search tool, it is possible to have a control on both means 
and variances (spread) of Gaussian membership functions. 

� Stochastically optimized fuzzy logic and neural network performed better 
than non-optimized ones. 

� Convergence speed of hybrid genetic algorithm-pattern search is low. 
Substituting faster algorithms for future works are suggested. 

� ACE committee machine with optimized and non-optimized models can 
significantly enhance accuracy of final prediction. 

� In situations where there are multiple choices to solve a problem, by little 
additional computation it is possible to construct an ACE committee ma-
chine to improve precision of prediction.  

� Implementation of the propounded strategy provides an accurate, quick 
and cost-effective way of estimating NMR log parameters, including free 
fluid porosity and rock permeability from conventional well log data for 
wells that have no NMR run. 
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A p p e n d i x  

Conversion factors for transferring permeability 
and sonic transit time units from field units to SI units 

Parameter 
Conversion factor 

Field units SI units 
Permeability mili-darcy [md] = 9.86923×10–4 μm2

Sonic transit time microsecond per foot [μs/ft] = 3.289474×10–6 s/m 
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