
Machine Learning, 40, 139–157, 2000
c© 2000 Kluwer Academic Publishers. Manufactured in The Netherlands.

An Experimental Comparison of Three Methods
for Constructing Ensembles of Decision Trees:
Bagging, Boosting, and Randomization

THOMAS G. DIETTERICH tgd@cs.orst.edu
Department of Computer Science, Oregon State University, Corvallis, OR 97331, USA

Editor: Doug Fisher

Abstract. Bagging and boosting are methods that generate a diverse ensemble of classifiers by manipulating the
training data given to a “base” learning algorithm. Breiman has pointed out that they rely for their effectiveness on
the instability of the base learning algorithm. An alternative approach to generating an ensemble is to randomize the
internal decisions made by the base algorithm. This general approach has been studied previously by Ali and Pazzani
and by Dietterich and Kong. This paper compares the effectiveness of randomization, bagging, and boosting for
improving the performance of the decision-tree algorithm C4.5. The experiments show that in situations with little
or no classification noise, randomization is competitive with (and perhaps slightly superior to) bagging but not as
accurate as boosting. In situations with substantial classification noise, bagging is much better than boosting, and
sometimes better than randomization.

Keywords: decision trees, ensemble learning, bagging, boosting, C4.5, Monte Carlo methods

1. Introduction

The goal of ensemble learning methods is to construct a collection (an ensemble) of in-
dividual classifiers that are diverse and yet accurate. If this can be achieved, then highly
accurate classification decisions can be obtained by voting the decisions of the individual
classifiers in the ensemble. Many authors have demonstrated significant performance im-
provements through ensemble methods (Breiman, 1996b; Kohavi & Kunz, 1997; Bauer &
Kohavi, 1999; Maclin & Opitz, 1997).

Two of the most popular techniques for constructing ensembles are bootstrap aggregation
(“bagging”; Breiman, 1996a) and the Adaboost family of algorithms (“boosting”; Freund
& Schapire, 1996). Both of these methods operate by taking a base learning algorithm
and invoking it many times with different training sets. In bagging, each training set is
constructed by forming a bootstrap replicate of the original training set. In other words,
given a training setS of m examples, a new training setS′ is constructed by drawingm
examples uniformly (with replacement) fromS.

The Adaboost algorithm maintains a set of weights over the original training setS and
adjusts these weights after each classifier is learned by the base learning algorithm. The
adjustments increase the weight of examples that are misclassified by the base learning
algorithm and decrease the weight of examples that are correctly classified. There are two



140 T.G. DIETTERICH

ways that Adaboost can use these weights to construct a new training setS′ to give to the
base learning algorithm. Inboosting by sampling, examples are drawn with replacement
from S with probability proportional to their weights. The second method,boosting by
weighting, can be used with base learning algorithms that can accept a weighted training set
directly. With such algorithms, the entire training setS(with associated weights) is given to
the base learning algorithm. Both methods have been shown to be very effective (Quinlan,
1996).

Bagging generates diverse classifiers only if the base learning algorithm isunstable—
that is, if small changes to the training set cause large changes in the learned classifier.
Breiman (1994) explores the causes of instability in learning algorithms and discusses ways
of reducing or eliminating it. Bagging (and to a lesser extent, boosting) can be viewed as
ways of exploiting this instability to improve classification accuracy. Adaboost requires less
instability than bagging, because Adaboost can make much larger changes in the training
set (e.g., by placing large weights on only a few of the examples).

This paper explores an alternative method for constructing good ensembles that does not
rely on instability. The idea is very simple: randomize the internal decisions of the learning
algorithm. Specifically, we implemented a modified version of the C4.5 (Release 1) learning
algorithm in which the decision about which split to introduce at each internal node of the
tree is randomized. Our implementation computes the 20 best splits (among those with
non-negative information gain ratio) and then chooses uniformly randomly among them.
For continuous attributes, each possible threshold is considered to be a distinct split, so the
20 best splits may all involve splitting on the same attribute.

This is a very crude randomization technique. One can imagine more sophisticated meth-
ods that preferred to select splits with higher information gain. But our goal in this paper
is to explore how well this simple method works. In a previous paper (Dietterich & Kong,
1995), we reported promising results for this technique on five tasks. In this paper, we
have performed a much more thorough experiment using 33 learning tasks. We compare
randomized C4.5 to C4.5 alone, C4.5 with bagging, and C4.5 with Adaboost.M1 (boosting
by weighting). We also explore the effect of random classification noise on the performance
of these four techniques.

2. Methods

We started with C4.5 Release 1 and modified it to support randomization, bagging, and
boosting by weighting. To implement boosting by weighting, we imported the bug fixes
from C4.5 Release 8 that concern the proper handling of continuous splits with weighted
training examples.

We employed 33 domains drawn from the UCI Repository (Merz & Murphy, 1996).
For all but three of the domains (shuttle, satimage, andphoneme), we performed a strat-
ified 10-fold cross-validation to evaluate each of the three ensemble methods (as well as
running C4.5 by itself). The remaining three domains have large designated test sets, so
we employed standard train/test methodology. The domains were selected without regard
to the results on the current study, and no other domains have been tested as part of the
study.1



GROWING RANDOM DECISION TREES 141

For randomization and bagging, we constructed ensembles containing 200 classifiers. For
boosting, we constructed ensembles of at most 100 classifiers. However, if the Adaboost.M1
algorithm terminated early (because a classifier had weighted error greater than 0.5 or
unweighted error equal to zero), then a smaller ensemble was necessarily used. In all
cases, we evaluated ensembles based on both the pruned and the unpruned decision trees.
For pruning, we used a confidence level of 0.10. To check whether our ensembles were
sufficiently large, we evaluated the performance of different ensemble sizes to determine
which ensemble size first matched (or exceeded) the performance of the final ensemble.
For randomized C4.5 and bagged C4.5, the required ensemble sizes are similar: nearly all
runs had converged (i.e., reached the same accuracy as an ensemble of size 200) within 50
iterations. Theking-rook-vs-king (krk) domain required the largest number of iterations, and
some folds had not converged after 200 iterations. Theletter-recognition task also required
a large number of iterations (ranging between 25 and 137 for randomized C4 and from 32 to
200 for bagging). For Adaboost, 40 iterations was sufficient for most domains, but there were
a few cases where more than 100 iterations would probably yield further improvements.
These include some folds ofking-rook-vs-king (krk), letter-recognition, splice, phoneme,
segmentation, andwaveform. Pruned trees generally required somewhat smaller ensembles
than unpruned trees, but the effect is minor.

For each domain and each algorithm configuration (C4.5 alone, randomized C4.5, bagged
C4.5, and boosted C4.5), we used the test data to determine whether pruning was needed.
Previous research has shown that pruning can make a substantial difference in algorithm
performance (Quinlan, 1993), and we did not want to have the pruning decision confound
our algorithm comparison. In real applications, the choice of whether to prune could be
made based on internal cross-validation within the training set. By using the test data to
make this decision, we are making the optimistic assumption that all such cross-validated
decisions would be made correctly.

Table 1 summarizes the 33 domains, the results of the experiments, and whether pruning
was employed. We did not find any particular pattern to whether pruning was employed
except to note that for Adaboost, pruning made no significant difference in any of the 33
domains. For C4.5 and randomized C4.5, pruning made a difference in 10 domains, while
for bagged C4.5, pruning made a significant difference in only 4 domains. The general lack
of significant differences is probably a result of the relatively low pruning confidence level
(0.10) that we employed.

We performed statistical tests to compare the four algorithm configurations. For the 30
domains where cross-validation was performed, we applied the 10-fold cross-validatedt test
to construct a 95% confidence interval for the difference in the error rates of the algorithms.
If this confidence interval does not include zero, then the test concludes that there is a
significant difference in performance between the algorithms. However, when applied to
the results of cross-validation, this test is known (Dietterich, 1998) to have elevated type I
error (i.e., it will incorrectly find a significant difference more often than the 5% of the time
indicated by the confidence level). Hence, if the test is unable to conclude that there is a
difference between the two algorithms (i.e., the interval includes zero), this conclusion can
be trusted, but when it finds a difference, this conclusion should be regarded with some
suspicion.



142 T.G. DIETTERICH

Table 1. The 33 domains employed in this study.

C4.5 Randomized C4.5 Bagged C4.5 Adaboosted C4.5

Index Name P Error rate P Error rate P Error rate P Error rate

1 sonar 0.3257± 0.0637 0.2018± 0.0545 * 0.2752± 0.0607 * 0.1651± 0.0505

2 letter 0.1225± 0.0045 0.0285± 0.0023 0.0552± 0.0032 * 0.0271± 0.0023

3 splice * 0.0575± 0.0081 * 0.0397± 0.0068 * 0.0506± 0.0076 0.0503± 0.0076

4 segment 0.0328± 0.0073 0.0203± 0.0058 0.0263± 0.0065 0.0151± 0.0050

5 glass * 0.3437± 0.0636 0.2277± 0.0562 0.2723± 0.0596 * 0.2277± 0.0562

6 soybean 0.1262± 0.0371 * 0.0852± 0.0312 * 0.1009± 0.0337 * 0.0757± 0.0296

7 autos 0.2326± 0.0578 * 0.1581± 0.0499 0.1814± 0.0528 0.1814± 0.0528

8 satimage * 0.1515± 0.0157 0.0890± 0.0125 0.1020± 0.0133 0.0850± 0.0122

9 annealing * 0.0132± 0.0075 0.0088± 0.0061 0.0099± 0.0065 0.0055± 0.0048

10 krk 0.1887± 0.0046 0.1309± 0.0039 0.1463± 0.0041 * 0.1026± 0.0036

11 heart-v * 0.2762± 0.0620 * 0.2429± 0.0594 0.2619± 0.0609 * 0.2810± 0.0623

12 heart-c * 0.2396± 0.0481 * 0.1853± 0.0437 * 0.1981± 0.0449 0.2045± 0.0454

13 breast-y * 0.2601± 0.0508 * 0.2500± 0.0502 * 0.2635± 0.0511 * 0.3142± 0.0538

14 phoneme * 0.1661± 0.0086 0.1437± 0.0081 0.1509± 0.0082 * 0.1464± 0.0081

15 voting * 0.1146± 0.0299 * 0.0921± 0.0272 * 0.0966± 0.0278 * 0.1034± 0.0286

16 vehicle 0.2944± 0.0307 0.2477± 0.0291 0.2570± 0.0294 0.2196± 0.0279

17 lymph 0.1962± 0.0640 0.1772± 0.0615 0.1835± 0.0624 * 0.1266± 0.0536

18 breast-w * 0.0494± 0.0161 * 0.0353± 0.0137 0.0367± 0.0139 0.0310± 0.0128

19 credit-g * 0.2921± 0.0282 0.2416± 0.0265 * 0.2495± 0.0268 0.2347± 0.0263

20 primary * 0.5845± 0.0525 * 0.5501± 0.0530 0.5645± 0.0528 * 0.5960± 0.0522

21 shuttle 0.0003± 0.0003 0.0002± 0.0002 0.0002± 0.0002 0.0001± 0.0002

22 heart-s * 0.0677± 0.0444 * 0.0677± 0.0444 * 0.0677± 0.0444 * 0.0902± 0.0506

23 iris 0.0563± 0.0369 * 0.0500± 0.0349 * 0.0500± 0.0349 * 0.0688± 0.0405

24 sick * 0.0132± 0.0036 0.0137± 0.0037 0.0137± 0.0037 * 0.0095± 0.0031

25 hepatitis 0.1758± 0.0599 0.1636± 0.0582 0.1636± 0.0582 * 0.1636± 0.0582

26 credit-a * 0.1614± 0.0275 * 0.1400± 0.0259 0.1371± 0.0257 * 0.1300± 0.0251

27 waveform * 0.2341± 0.0117 0.1784± 0.0106 0.1675± 0.0104 0.1521± 0.0100

28 horse-colic * 0.1561± 0.0371 0.1561± 0.0371 0.1481± 0.0363 * 0.1825± 0.0395

29 heart-h * 0.1645± 0.0424 * 0.1809± 0.0440 * 0.1579± 0.0417 0.2039± 0.0461

30 labor 0.1493± 0.0925 * 0.1493± 0.0925 0.1194± 0.0842 * 0.1194± 0.0842

31 krkp 0.0075± 0.0030 0.0075± 0.0030 0.0056± 0.0026 * 0.0037± 0.0021

32 audiology 0.2203± 0.0540 * 0.2458± 0.0561 0.1822± 0.0503 * 0.1525± 0.0469

33 hypo 0.0058± 0.0024 * 0.0079± 0.0028 0.0042± 0.0021 * 0.0040± 0.0020

In the column labeled “P”, an asterisk indicates that pruned trees were employed. The error rate column gives
the error rate± a 95% confidence limit. Error rates estimated by 10-fold cross-validation except forphoneme,
satimage, andshuttle.



GROWING RANDOM DECISION TREES 143

Table 2. All pairwise combinations of the four ensemble methods. Each cell contains the number of wins, losses,
and ties between the algorithm in that row and the algorithm in that column.

C4.5 Adaboost C4.5 Bagged C4.5

Random C4.5 14 - 0 - 19 1 - 7 - 25 6 - 3 - 24

Bagged C4.5 11 - 0 - 22 1 - 8 - 24

Adaboost C4.5 17 - 0 - 16

For the three domains where a single test set was employed, we constructed a confidence
interval based on the normal approximation to the binomial distribution (with a correction
for the pairing between the two algorithms). This test is safe, but somewhat conservative.

3. Results

Table 2 summarizes the results of these statistical tests. All three ensemble methods do well
against C4.5 alone—Randomized C4.5 is better in 14 domains, Bagged C4.5 is better in
11, and Adaboosted C4.5 is better in 17. C4.5 is never able to do better than any of the
ensemble methods.

Figure 1 summarizes the observed differences between randomized C4.5 and bagged
C4.5. Figure 2 does the same for randomized C4.5 versus boosted C4.5. These plots are
sometimes called “Kohavi plots”, because they were introduced by Ronny Kohavi in the
MLC++system (Kohavi, Sommerfield, & Dougherty, 1997). Each point plots the difference

Figure 1. Difference in performance of Randomized C4.5 and Bagged C4.5. The difference is scaled by the error
rate of C4.5 alone. Error bars give a 95% confidence interval according to the cross-validatedt test (which tends
to give intervals that are too narrow). The domains are numbered to correspond with the entries in Table 1.



144 T.G. DIETTERICH

Figure 2. Difference in performance of Randomized C4.5 and Adaboosted C4.5. The difference is scaled by the
error rate of C4.5 alone. Error bars give a 95% confidence interval according to the cross-validatedt test (which
tends to give intervals that are too narrow). The domains are numbered to correspond with the entries in Table 1.

in the performance of the two algorithms scaled according to the performance of C4.5 alone.
For example, in thesonar task, C4.5 (unpruned) gives an error rate of 0.3257; Randomized
C4.5 has an error rate of 0.2018, and Bagged C4.5 has an error rate of 0.2752. This means
that Randomized C4.5 would give a 38% reduction in error rate over C4.5, while Bagged
C4.5 would give only a 15% reduction. The difference in percentage reduction in error rate
is 23%, which is what is plotted in the figure (as−0.23). The upper and lower bounds on
the confidence interval have been similarly scaled. Hence, the vertical axis indicates the
importance of the observed difference (in terms of the improvement over C4.5) while
the error bars indicate the statistical significance of the observed difference. In each plot,
the 33 domains are sorted in ascending order of their differences. Numerical indexes were
assigned to the domains based on the ordering in figure 1.

Let us consider figure 1 first. The left end of the figure shows five domains (with indexes
2, 3, 4, 8, and 10 corresponding toletter-recognition, splice, segmentation, satimage,
andking-rook-vs-king (krk)) where Randomized C4.5 is clearly superior to Bagged C4.5.
Conversely, there are three domains (with indexes 27, 32, and 33 corresponding towaveform,
audiology andhypo) where Bagged C4.5 is superior to Randomized C4.5. Ali and Pazzani
(1995, 1996) noticed that the domains where bagging does poorly tend to be domains with a
large number of training examples. We can understand this by imagining that C4.5 (without
Bagging or Randomization) will produce a particular decision treeT1 with n1 leaves. If the
bootstrap sample contains enough examples corresponding to each of thesen1 leaves, then
Bagged C4.5 will tend to grow the same decision treeT1. In the limit of infinite sample size,
C4.5 will always grow the same tree, and bagging will have no effect on the error rate of
C4.5. We can conclude that the effectiveness of bagging will be reduced as the training set
becomes very large (unless the corresponding decision trees also become very large).



GROWING RANDOM DECISION TREES 145

Figure 3. Difference in performance of Randomized C4.5 and Bagged C4.5 as a function of the number of
training examples in the non-majority class. The difference is scaled by the error rate of C4.5 alone. Error bars
give a 95% confidence interval according to the cross-validatedt test (which tends to give intervals that are too
narrow).

The effectiveness of randomization, on the other hand, does not depend as much on the
size of the training set. Even with an infinitely large training set, Randomized C4.5 would
still produce a diverse set of decision trees. (Of course, such an ensemble would probably
not be as accurate as a single tree grown without randomness!)

To explore this point, figure 3 plots the difference in accuracy of Randomized C4.5 and
Bagged C4.5 (as in figure 1) as a function of the total number of training examples in the
non-majority classes in the problem. We can see that the five domains where randomiza-
tion outperforms bagging are five domains with many non-majority-class examples. The
domains where Bagging outperforms Randomization are cases where either the confidence
interval just barely avoids zero(waveform) or where the training sets are very small. In both
of these cases, we must be very suspicious of the cross-validatedt test—these are precisely
the situations where this test tends to give incorrect results.

From this analysis, we conclude that Randomized C4.5 is certainly competitive with, and
probably superior to, Bagged C4.5 in applications where there is relatively little noise in
the data.

One disappointing aspect of the results shown in figure 1 and Table 1 is that randomization
did not reach zero error in theletter-recognition domain. In a previous study, Dietterich and
Kong (1995) reported an experiment in which 200-fold randomized C4.5 attained perfect
performance on theletter-recognition task (training on the first 16,000 examples and testing
on the remaining 4,000). We have attempted to replicate that result without success, and we
have not been able to determine the source of the discrepancy.

Now let us compare Randomized C4.5 to Adaboosted C4.5. Figure 2 shows that Adaboost
is superior to Randomized C4.5 in 7 domains (with indexes 10, 16, 24, 31, 32, and 33
corresponding toking-rook-vs-king (krk), vehicle, sick, king-rook-vs-king-pawn (krkp),
audiology, andhypo), while Randomized C4.5 is superior in only 1. The one domain where



146 T.G. DIETTERICH

Randomized C4.5 does better issplice (index 3). We have not been able to identify any
particular characteristic of these domains that explains why Adaboosted C4.5 does so well.
But the main conclusion is that Adaboosted C4.5 is generally doing as well as or better than
Randomized C4.5.

An important issue that has been explored by previous researchers is the question of
how well these ensemble methods perform in situations where there is a large amount
of classification noise (i.e., training and test examples with incorrect class labels). In his
AAAI-96 talk, Quinlan reported some experiments showing that Adaboosted C4.5 did not
perform well in these situations. Ali and Pazzani (1996) observed that randomization did
not work as well in noisy domains as bagging. However, in their experiments, they only
considered ensembles of size 11. We conjectured that larger ensembles might be able to
overcome the effects of noise. To explore the effect of classification noise, we added random
class noise to nine domains (audiology, hypo, king-rook-vs-king-pawn (krkp), satimage,
sick, splice, segment, vehicle, andwaveform). These data sets were chosen because at least
one pair of the ensemble methods gave statistically significantly different performance on
these domains. We did not perform noise experiments withletter-recognition or king-rook-
vs-king (krk), because of the huge size of those data sets. To add classification noise at a given
rater , we chose a fractionr of the data points (randomly, without replacement) and changed
their class labels to be incorrect (the label for each example was chosen uniformly randomly
from the incorrect labels).2 Then the data were split into 10 subsets for the stratified 10-fold
cross-validation (n.b., the stratification was performed using the new labels).

Table 3 shows the win-lose-tie counts for all pairs of learning methods at the four noise lev-
els (0%, 5%, 10%, and 20%). This table reveals some patterns that confirm the observations

Table 3. All pairwise combinations of the four methods for four levels of noise and 9 domains. Each cell contains
the number of wins, losses, and ties between the algorithm in that row and the algorithm in that column.

C4.5 Adaboost C4.5 Bagged C4.5

Noise= 0%

Random C4.5 5 - 0 - 4 1 - 6 - 2 3 - 3 - 3

Bagged C4.5 4 - 0 - 5 0 - 5 - 4

Adaboost C4.5 6 - 0 - 3

Noise= 5%

Random C4.5 5 - 2 - 2 3 - 2 - 4 1 - 5 - 3

Bagged C4.5 6 - 0 - 3 5 - 1 - 3

Adaboost C4.5 3 - 3 - 3

Noise= 10%

Random C4.5 4 - 1 - 4 5 - 1 - 3 1 - 6 - 2

Bagged C4.5 5 - 0 - 4 6 - 1 - 2

Adaboost C4.5 2 - 3 - 4

Noise= 20%

Random C4.5 5 - 2 - 2 5 - 0 - 4 0 - 2 - 7

Bagged C4.5 7 - 0 - 2 6 - 0 - 3

Adaboost C4.5 3 - 6 - 0



GROWING RANDOM DECISION TREES 147

of Ali and Pazzani and the observations of Quinlan. As we add noise to these problems, Ran-
domized C4.5 and Adaboosted C4.5 lose some of their advantage over C4.5 while Bagged
C4.5gainsadvantage over C4.5. For example, with no noise, Adaboosted C4.5 beats C4.5
in 6 domains and ties in 3, whereas at 20% noise, Adaboosted C4.5 wins in only 3 domains
and loses in 6! In contrast, Bagged C4.5 with no noise beats C4.5 in 4 domains and ties in
5, but at 20% noise, Bagged C4.5 wins in 7 domains and ties in only 2.

When we compare Bagging and Randomizing to Adaboosted C4.5, we see that with
no noise, Adaboost is superior to Bagged C4.5 (5-0-4) and Randomized C4.5 (6-1-2). But
with 20% noise, Adaboost is inferior to Bagged C4.5 (0-6-3) and to Randomized C4.5
(0-5-4). Classification noise destroys the effectiveness of Adaboost compared to the other
two ensemble methods (and even compared to C4.5 alone in 6 domains).

Finally, when we compare Bagged C4.5 and Randomized C4.5 to each other, we see
that with no noise, they are evenly matched (3-3-3). With 20% noise, Bagging has a slight
advantage (2 wins, 0 losses, and 7 ties). The high number of ties indicates that Bagging and
Randomizing are behaving very similarly as the amount of noise increases.

From this analysis, we can conclude that the best method in applications with large
amounts of classification noise is Bagged C4.5, with Randomized C4.5 behaving almost as
well. In contrast, Adaboost is not a good choice in such applications.

One further way to gain insight into the behavior of these ensemble methods is to construct
κ-error diagrams (as introduced by Margineantu and Dietterich (1997)). These diagrams
help visualize the accuracy and diversity of the individual classifiers constructed by the
ensemble methods. For each pair of classifiers, we measure their accuracy as the average
of their error rates on the test data; we measure their diversity by computing a degree-
of-agreement statistic known asκ. We then construct a scatter plot in which each point
corresponds to a pair of classifiers. Itsx coordinate is the diversity value (κ) and its y
coordinate is the mean accuracy of the classifiers.

Theκ statistic is defined as follows. Suppose there areL classes, and letC be anL × L
square array such thatCi j contains the number of test examples assigned to classi by the
first classifier and into classj by the second classifier. Define

21 =
∑L

i=1 Cii

m
,

wherem is the total number of test examples. This is an estimate of the probability that the
two classifiers agree.

We could use21 as a measure of agreement. However, a difficulty with21 is that in
problems where one class in much more common than the others, all reasonable classifiers
will tend to agree with one another, simply by chance, so all pairs of classifiers will obtain
high values for21. Theκ statistic corrects for this by computing

22 =
L∑

i=1

(
L∑

j=1

Ci j

m
·

L∑
j=1

Cji

m

)
,

which estimates the probability that the two classfiers agree by chance, given the observed
counts in the table. Specifically,

∑L
j=1

Ci j

m is the fraction of examples that the first classifier



148 T.G. DIETTERICH

assigns to classi , and
∑L

j=1
Cji

m is the fraction of examples that the second classifier assigns
to classi . If each classifier chooses which examples to assign to classi completely randomly,
then the probability that they will simultaneously assign a particular test example to classi
is the product of these two fractions. In such cases, the two classifiers should have a lower
measure of agreement than if the two classifiers agree on which examples they both assign
to classi .

With these definitions, theκ statistic is computed as

κ = 21−22

1−22
.

κ = 0 when the agreement of the two classifiers equals that expected by chance, andκ = 1
when the two classifiers agree on every example. Negative values occur when agreement
is less than expected by chance—that is, there is systematic disagreement between the
classifiers.

Figure 4 showsκ-error diagrams for Randomized C4.5, Bagged C4.5, and Adaboosted
C4.5 on thesick dataset. It is illustrative of the diagrams in most of the other domains. We
can see that Bagged C4.5 gives a very compact cloud of points. Each point has low error
rate and a high value forκ, which indicates that the classifiers are accurate but not very
diverse. Randomized C4.5 has a slightly worse error rate but also a more diverse collection
of hypotheses. And Adaboosted C4.5 has hypotheses with a wide range of accuracies and
degrees of agreement. This clearly shows the tradeoff between accuracy and diversity. As
the classifiers become more accurate, they must become less diverse. Conversely as they
become more diverse, they must become less accurate. This shows very dramatically how
the Adaboost strategy for constructing ensembles produces much more diverse ensembles
than either bagging or randomizing.

While this pattern of accuracy and diversity is observed across many of the data sets,
the effect of the pattern on the relative performance is not always the same. As we have
seen, Adaboosted C4.5 typically is better than Bagged C4.5 and Randomized C4.5, and
this is explained by the much greater diversity of Adaboosted C4.5. But the relative per-
formance of bagging and randomizing is less apparent in theκ-error diagrams. On thesick
dataset, for example, Adaboost does better than either Bagging or Randomizing. Bagging
and Randomizing are statistically indistinguishable, even though Randomizing has higher
diversity.

Figure 5 showsκ-error diagrams for thesplice task, which shows the same pattern
of relative diversity. Adaboosted C4.5 is more diverse than Randomized C4.5, which is
more diverse than Bagged C4.5. In this domain, however, Randomized C4.5 outperforms
both boosting and bagging. This can be explained in part because of the many high-error
hypotheses that Adaboost also creates (near the top of theκ-error diagram).

Theκ-error diagrams also help us understand the effect of noise on the three ensemble
methods. Figure 6 showsκ-error diagrams forsick with 20% added classification noise. If
we compare these to figure 4, we can see how the noise affects the three methods. The cloud
of points for Randomized C4.5 is basically shifted upward by 0.20, which is what we would
expect when 20% classification noise is added. Note, however, that Randomized C4.5 does
not become more diverse. In contrast, Bagged C4.5 is shifted upward and to the left—so



GROWING RANDOM DECISION TREES 149

Figure 4. κ-error diagrams for thesick data set using Bagged C4.5 (top), Randomized C4.5 (middle), and
Adaboosted C4.5 (bottom). Accuracy and diversity increase as the points come near the origin.



150 T.G. DIETTERICH

Figure 5. κ-error diagrams for thesplice data set using Bagged C4.5 (top), Randomized C4.5 (middle), and
Adaboosted C4.5 (bottom).



GROWING RANDOM DECISION TREES 151

Figure 6. κ-error diagrams for thesick data set with 20% random classification noise. Bagged C4.5 (top),
Randomized C4.5 (middle), and Adaboosted C4.5 (bottom).



152 T.G. DIETTERICH

it becomes substantially more diverse as a result of the noise. And the cloud of points for
Adaboosted C4.5 moves close to an error rate of 0.45 (and very small values ofκ). This
is what we would observe if classifiers are making nearly random guesses. The net result
is that Adaboost shifts from being the best method to being the worst, while Randomizing
and Bagging remain statistically indistinguishable.

This general pattern is observed in most of the data sets. Noise improves the diversity
of Bagging, damages the accuracy of Adaboost severely, and leaves Randomized C4.5
unaffected (aside from the expected shift in error rates).

Figures 7 and 8 show how the segment data set behaves when noise is added. With no
noise, Randomized C4.5 is slightly more diverse than Bagged C4.5, and the result is that
Randomized C4.5 and Adaboosted C4.5 are tied, and both of them are more accurate than
Bagged C4.5. However, when noise is added, the diversity of Randomized C4.5 is hardly
changed at all, while the diversity of Bagged C4.5 is substantially increased. Meanwhile, the
accuracy of Adaboosted C4.5 is severely degraded, so that many classifiers have error rates
greater than 0.5. The net result is that bagging and randomization have equal performance
with 20% noise, and both of them are better than Adaboost.

How can these effects be explained? A plausible explanation for the poor response of
Adaboost to noise is that mislabeled training examples will tend to receive very high weights
in the Adaboost algorithm. Hence, after a few iterations, most of the training examples
with big weights will be mislabeled examples. A classifier learned from these mislabeled
examples will indeed have very lowκ values when compared with a classifier learned from
the equally-weighted training examples. In fact, one would expect to see negativeκ values,
and these are observed.

The improved diversity of Bagging could be explained by the following observation.
Let us suppose that each mislabeled example can have a substantial effect on the learning
algorithm and the classifier that it produces, much the way outliers can have a big effect on
linear regression. For example, a mislabeled example can cause C4.5 to split off examples
on either side of it, with the result that the training data can become fragmented and the
decision tree can become inaccurate. However, in each bootstrap replicate training set, some
fraction of the training examples will not appear (in general). Indeed, on average, 36.8% of
the training examples will be omitted. Among these omitted examples will be some of the
mislabeled training examples, and their omission will lead to large changes in the learned
decison tree.

In contrast, Randomized C4.5 never omits any training examples. Hence, even when the
splitting decision is randomized, C4.5 still continues making splits until it produces pure (or
nearly pure) leaf nodes. So Randomized C4.5 can never ignore any of the mislabeled training
examples. This is why its diversity is not affected by the addition of noise. In settings where
there is very low noise, Randomized C4.5 produces more diverse classifiers than Bagged
C4.5, and this often permits it to do better. Furthermore, the ability of Randomized C4.5
to grow each tree using all of the training data will tend to make each individual tree more
accurate. (However, the fact that Randomized C4.5 deliberately makes suboptimal splitting
decisions may limit this advantage by reducing the accuracy of the trees). In settings with
moderate amounts of noise, this advantage (of using all of the data) becomes a disadvantage;
Bagging becomes more diverse, and occasionally gives better results.



GROWING RANDOM DECISION TREES 153

Figure 7. κ-error diagrams for thesegment data set. Bagged C4.5 (top), Randomized C4.5 (middle), and
Adaboosted C4.5 (bottom).



154 T.G. DIETTERICH

Figure 8. κ-error diagrams for thesegment data set with 20% random classification noise. Bagged C4.5 (top),
Randomized C4.5 (middle), and Adaboosted C4.5 (bottom).



GROWING RANDOM DECISION TREES 155

Figure 9. Mean weight per training example for the 560 corrupted training examples and the remaining 2,240
uncorrupted training examples in thesick data set.

To test the hypothesis that Adaboost is placing more weight on the noisy examples,
consider figure 9. Here we see that much more weight is placed (on the average) on the
noisy data points than on the uncorrupted data points. If we consider the fraction of the total
weight placed on the corrupted data points, then it rapidly converges to 0.50: Adaboost is
placing half of its weight on the corrupted data points even though they make up only 20%
of the training set.

It is more difficult to verify the hypothesis concerning the effect of noisy examples on
bagging. Further research is needed to explore and test this hypothesis.

4. Conclusions

This paper has compared three methods for constructing ensemble classifiers using C4.5:
Randomizing, Bagging, and Boosting. The experiments show that over a set of 33 tasks,
Boosting gives the best results in most cases (as long as there is little or no noise in the
data). Randomizing and Bagging give quite similar results—there is some evidence that
Randomizing is slightly better than Bagging in low noise settings.

With added classification noise, however, Bagging is clearly the best method. It appears
to be able to exploit the classification noise to produce more diverse classifiers. The perfor-
mance of Adaboost can be destroyed by classification noise—the error rates of the individual
classifiers become very high. Surprisingly, the performance of Randomized C4.5 with clas-
sification noise is not as good as Bagging. Experiments showed that Randomization was
not able to increase the diversity of its classifiers as the noise rate increased.

The randomization method that we studied in this paper is very simple: the 20 best
candidate splits are computed, and then one of these is chosen uniformly at random. An
obvious next step would be to make the probability of chosing a split be proportional



156 T.G. DIETTERICH

to the information gain of that split. Another refinement would be to perform “limited
discrepancy” randomization—at mostK splits would be randomized within a tree (for
some specified valueK ). The value ofK could be set by cross-validation. The algorithm
could explicitly consider making 0, 1, 2,. . . , K random splits. This would ensure that the
“best” tree (i.e., the tree produced by C4.5 itself) would be included in the ensemble. Finally,
because randomization can produce trees of different accuracies, it would be worthwhile
to consider taking a weighted vote (as in Adaboost), with the weight determined by the
accuracy of the tree on the training data. These improvements might make Randomized
C4.5 even more competitive with Adaboost in low-noise settings. But without some form
of outlier identification and removal, Randomized C4.5 is not likely to do as well as Bagging
in high-noise settings.

Acknowledgments

The author gratefully acknowledges the support of the National Science Foundation under
NSF Grants IRI-9626584 and CDA-9216172.

Notes

1. In annealing, we treated the unmeasured values as separate attribute values rather than as missing values. In
auto, the class variable was the make of the automobile. In the breast cancer domains, all features were treated
as continuous. The heart disease data sets were recoded to use discrete values where appropriate. All attributes
were treated as continuous in theking-rook-vs-king (krk) data set. Inlymphography, thelymph-nodes-dimin,
lymph-nodes-enlar, andno-of-nodes-in attributes were treated as continuous. Insegment, all features
were rounded to four significant digits to avoid roundoff errors in C4.5. Inshuttle, all attributes were treated
as continuous. Invoting-records, thephysician-fee-freeze attribute was removed to make the task more
challenging.

2. Note that other authors have used a different procedure in which with probabilityr , each training example’s
label is set to a random class—which may include the original class label or an incorrect class label. Such a
procedure only produces a mislabeling rate ofr (k − 1)/k on the average, wherek is the number of classes.
Furthermore, in small data sets, it may create levels of mislabeling much higher or much lower thanr , whereas
the technique we employed guarantees a mislabeling rate of exactlyr .

References

Ali, K. M. (1995). A comparison of methods for learning and combining evidence from multiple models. Technical
Report 95-47, Department of Information and Computer Science, University of California, Irvine.

Ali, K. M. & Pazzani, M. J. (1996). Error reduction through learning multiple descriptions.Machine Learning,
24(3), 173–202.

Bauer, E. & Kohavi, R. (1999). An empirical comparison of voting classification algorithms: Bagging, boosting,
and variants.Machine Learning, 36(1/2), 105–139.

Breiman, L. (1994). Heuristics of instability and stabilization in model selection. Technical Report 416, Department
of Statistics, University of California, Berkeley, CA.

Breiman, L. (1996a). Bagging predictors.Machine Learning, 24(2), 123–140.
Breiman, L. (1996b). Bias, variance, and arcing classifiers. Technical Report 460, Department of Statistics, Uni-

versity of California, Berkeley, CA.
Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised classification learning algorithms.

Neural Computation, 10(7), 1895–1924.



GROWING RANDOM DECISION TREES 157

Dietterich, T. G. & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision
tree algorithms. Technical Report, Department of Computer Science, Oregon State University, Corvallis, Oregon.
Available fromftp://ftp.cs.orst.edu/pub/tgd/papers/tr-bias.ps.gz.

Freund, Y. & Schapire, R. E. (1996). Experiments with a new boosting algorithm. InProc. 13th International
Conference on Machine Learning(pp. 148–146). Morgan Kaufmann.

Kohavi, R. & Kunz, C. (1997). Option decision trees with majority votes. InProceedings of the Fourteenth
International Conference on Machine Learning(pp. 161–169). San Francisco, CA: Morgan Kaufman.

Kohavi, R., Sommerfield, D., & Dougherty, J. (1997). Data mining using MLC++, a machine learning library in
C++. International Journal on Artificial Intelligence Tools, 6(4), 537–566.

Maclin, R. & Opitz, D. (1997). An empirical evaluation of bagging and boosting. InProceedings of the Fourteenth
National Conference on Artificial Intelligence(pp. 546–551). Cambridge, MA: AAAI Press/MIT Press.

Margineantu, D. D. & Dietterich, T. G. (1997). Pruning adaptive boosting. InProc. 14th International Conference
on Machine Learning(pp. 211–218). Morgan Kaufmann.

Merz, C. J. & Murphy, P. M. (1996). UCI repository of machine learning databases.http://www.ics.uci.
edu/∼mlearn/MLRepository.html.

Quinlan, J. R. (1993).C4.5: Programs for empirical learning. Morgan Kaufmann, San Francisco, CA.
Quinlan, J. R. (1996). Bagging, boosting, and C4.5. InProceedings of the Thirteenth National Conference on

Artificial Intelligence(pp. 725–730). Cambridge, MA: AAAI Press/MIT Press.

Received February 4, 1998
Accepted August 16, 1999
Final Manuscript August 16, 1999


