
Parallel Data Access for Multiway Rank Joins

Adnan Abid and Marco Tagliasacchi

Dipartimento di Elettronica e Informazione – Politecnico di Milano,
Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

{abid,tagliasa}@elet.polimi.it

Abstract. Rank join operators perform a relational join among two or
more relations, assign numeric scores to the join results based on the
given scoring function and return K join results with the highest scores.
The top-K join results are obtained by accessing a subset of data from
the input relations. This paper addresses the problem of getting top-
K join results from two or more search services which can be accessed
in parallel, and are characterized by non negligible response times. The
objectives are: i) minimize the time to get top-K join results. ii) avoid
the access to the data that does not contribute to the top-K join results.

This paper proposes a multi-way rank join operator that achieves the
above mentioned objectives by using a score guided data pulling strategy.
This strategy minimizes the time to get top-K join results by extracting
data in parallel from all Web services, while it also avoids accessing
the data that is not useful to compute top-K join results, by pausing
and resuming the data access from different Web services adaptively,
based on the observed score values of the retrieved tuples. An extensive
experimental study evaluates the performance of the proposed approach
and shows that it minimizes the time to get top-K join results, while
incurring few extra data accesses, as compared to the state of the art
rank join operators.

Keywords: rank joins, rank queries, score guided data pulling, top-K
queries.

1 Introduction

Rank join operators have a widespread applicability in many application do-
mains. Hence, a set of specialized rank join operators have been recently pro-
posed in the literature [1][4][6][8][9]. These operators are capable of producing
top-K join results by accessing a subset of data from each source, provided the
score aggregation function is monotone, and the data retrieved from each source
is sorted in descending order of score.

As an illustrative example, consider a person who wants to plan his visit to
Paris by searching for a good quality hotel and a restaurant, which are situated
close to each other and are highly recommended by their customers. This can be
accomplished by extracting information from suitable data sources available on
the Web and merging the information to get the top rated resultant combina-
tions, as contemplated in Search Computing [3]. The Web services, e.g. Yahoo!

S. Auer, O. Diaz, and G.A. Papadopoulos (Eds.): ICWE 2011, LNCS 6757, pp. 44–58, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

Parallel Data Access for Multiway Rank Joins 45

Local or yelp.com, can be used to find the places of interest in a city. The
data can be processed to produce the top-K scoring join results of hotels and
restaurants. A sample rank query based on the above example is the following:

SELECT h.name, r.name, 0.6*h.rating+0.4*r.rating as score
FROM Hotels h, Restaurants r
WHERE h.zip = r.zip AND h.city= ‘Paris’ AND r.city = ‘Paris’
RANK BY 0.6*h.rating+0.4*r.rating

Motivation: The recent solutions to rank join problem [5][7][12] focus on pro-
viding instance optimal algorithms regarding the I/O cost. The I/O cost is a
quantity proportional to the overall number of fetched tuples. So these algo-
rithms minimize the total number of tuples to be accessed in order to find the
top-K join results. Hash Rank Join (HRJN*) [7] is an instance optimal algo-
rithm in terms of I/O cost and it introduces a physical rank join operator. This
algorithm has been further improved in [5] and [12]. Indeed, this optimization
of the I/O cost helps reducing the total time to compute the top-K join results
as well, yet total time can be further reduced for the following reason: these
I/O optimal algorithms access data from the data sources in a serial manner,
i.e. they access data from one source, process it and then fetch the data from
the next most suitable source. The latter is selected based on a pulling strategy,
which determines the source to be accessed to, in order to minimize the I/O cost.
However, in the context of using Web services as data sources, data processing
time is found to be negligible as compared to data fetching time. So, most of
the time is spent in waiting for retrieving the data. Therefore, an alternative
approach that extracts data from all data sources in parallel should be used in
order to reduce the data extraction time from all sources by overlapping the
waiting times. This calls for a parallel data access strategy.

A simple parallel strategy keeps on extracting data from each Web service in
parallel until top-K join results can be reported. We call this strategy Parallel
Rank Join (PRJ). As an illustrative example, assume that we can extract top
10 join results from 2 different Web services after fetching 3 data pages from
each Web service. Figure 1 shows the behaviour of both HRJN* and PRJ. It can
be observed that both HRJN* and PRJ approaches have shortcomings: HRJN*
takes a large amount of time to complete, whereas, PRJ costs more in terms
of I/O as it may retrieve unnecessary data (e.g. C4 and C5). This requires the
design of a rank join operator that is specifically conceived to meet the objectives
of getting top-K join results quickly and restricting access to unwanted data,
when using Web services or similar data sources.

As a contribution we propose a Controlled Parallel Rank Join (cPRJ) algo-
rithm that computes the top-K join results from multiple Web services with a
controlled parallel data access which minimizes both total time, and the I/O
cost, to report top-K join results. In Section 2 we provide the preliminaries. The
algorithm is explained in Section 3. A variant of the algorithm is presented in
Section 4. The experiments and results are discussed in Section 5, and related
work and conclusion are presented in Sections 6 and 7, respectively.

46 A. Abid and M. Tagliasacchi

Fig. 1. Serial Data Access of HRJN* vs Parallel Data Access

2 Preliminaries

Consider a query Q whose answer requires accessing a set of Web services
S1, ..., Sm, that can be wrapped to map their data in the form of tuples as
in relational databases. Each tuple ti ∈ Si is composed of an identifier, a join
attribute, a score attribute and other named attributes. The tuples in every Web
service are sorted in descending order of score, where the score reflects the re-
levance with respect to the query. Let t

(d)
i denote a tuple at position d of Si.

Then σ(t(d)
i) ≥ σ(t(d+1)

i), where σ(ti) is the score of the tuple ti. Without loss
of generality, we assume that the scores are normalized in the [0,1] interval.

Each invocation to a Web service Si retrieves a fixed number of tuples, referred
to as chunk. Let (CSi) denote the chunk size, i.e. the number of tuples in a
chunk. The chunks belonging to a Web service are accessed in sequential order,
i.e. the c− th chunk of a Web service will be accessed before (c + 1)− th chunk.
Each chunk, in turn, contains tuples of Si sorted in descending order of score.
Furthermore, Si provides one chunk of tuples in a specified time, which is referred
to as its average response time (RTi). Let t = t1 � t2 � ... tm denote a join
result formed by combining the tuples retrieved from the Web services, where
ti is a tuple that belongs to the Web service Si. This join result is assigned
an aggregated score based on a monotone score aggregation function, σ(t) =
f(σ(t1), σ(t2), .., σ(tm)). The join results obtained by joining the data from these
Web services are stored in a buffer Sresult in descending order of their aggregate
score.

2.1 Bounding Schemes

Let τi denotes the local threshold of a Web service Si which represents an upper
bound on the possible score of a join result that can be computed by joining any
of the unseen tuples of Si to either seen or unseen data of the rest of the Web
services. The global threshold τ of all the Web services is the maximum among
the local thresholds i.e. τ = max{τ1, τ2, ..., τm}.

The local threshold is updated with each data access to the corresponding
Web service. Whereas, the global threshold is updated after every data access,
independent of the accessed Web service. The bounding scheme is responsible

Parallel Data Access for Multiway Rank Joins 47

for computing τ , which represents an upper bound on the scores of possible join
results, which can be formed by the unseen data. Thus, it helps in reporting
the identified join results to the user. Let K denote the number of join results
for which σ(t) ≥ τ , then these can be guaranteed to be the top-K. Figure 2(a)
illustrates an example in which the global threshold is computed based on two
possible bounding schemes based on the snapshot of execution, when all sources
have fetched three tuples. The join predicate is the equality between the zip
code attribute. These two bounding schemes corner bound and tight bound are
further discussed below.

Corner Bound: The local threshold for a Web service Si is calculated by consi-
dering the score of last seen tuple of Si and maximum possible scores for the
rest of the Web services. As an example, in Figure 2(a), the local threshold for
S1 is τ1 = f(σ(t(3)1), σ(t(1)2), σ(t(1)3)) = f(0.8, 1.0, 1.0) = 2.8, assuming a simple
linear score aggregation function. There is a drawback in using the threshold as
computed by means of the corner bound. Indeed, it implicitly assumes that the
first tuples of all the Web services formulate a valid join result, which may or
may not be the case. Therefore, when more than two Web services are involved
in a join, if the first tuples of all the Web services do not satisfy the join predi-
cate, then the computed value of the corner bound threshold is not tight, in the
sense that it might not be possible to from join results with unseen data that
achieves that score. Note that HRJN* adopts a corner bound [7].

Tight Bound: It is possible to compute τ as a tight bound on the aggre-
gate score of unseen join results [12]. The local threshold for a Web service
Si can be calculated by considering the score of the last seen tuple from Si

and the score of the partial join result, PJi, with maximum possible score
which is formed by the rest of the Web services. Let Ni = {i1, ..., in}
denote a subset of {1, ..., m} which does not contain the index i of Web ser-
vice Si, and n = |N |, 0 ≤ n < m. There can be 2m−1 such distinct sub-
sets. We find the join result with maximum possible score for each distinct
subset N j

i , where 0 < j ≤ 2m−1, and store it in PJ(N j
i). The join results

for a particular subset N j
i are computed by joining the seen tuples from the

Web services whose indices are in N j
i and completing the join result with a

tuple from the rest of the Web services i.e. N − N j
i , whose score is equal to

the score of last seen tuple in the respective Web service. In this way, the
join result in PJ(N j

i) has one tuple from every Web service. The local thre-
shold τi for Si is computed as max σ(PJ(N j

i)), 0 < j ≤ 2m−1. The maxi-
mum of all local thresholds is considered as global threshold. Further opti-
mizations in the computation of the tight bound are discussed in [5]. When
there are only two Web services [11], or the top scoring tuples in each service
contribute to PJ(N j

i), the tight bound and corner bound are equivalent. Fi-
gure 2(b) shows the average gain in terms of I/O cost and fetch time while
using tight bound over corner bound using HRJN*, averaged over 10 different
data sets.

48 A. Abid and M. Tagliasacchi

(a) (b)

Fig. 2. (a) An example scenario, tight and corner bounding schemes. (b) Gain in I/O
and time by using tight bound over corner bound with 4 Web services and K=20.

2.2 Data Pulling Strategy

The data pulling strategy provides a mechanism to choose the most suitable
data source to be invoked at a given time during the execution [7]. The pulling
strategy can be as simple as a round-robin strategy. HRJN* which focuses only
on the optimization of the I/O cost, adopts a pulling strategy whereby the next
service to be invoked is the one whose local threshold is equal to τ , the ties
are broken by choosing the service which has extracted lesser number of tuples.
The intuition of this pulling strategy is to keep all local thresholds as close as
possible, which, due to monotonicity, is only possible by extracting the data
from the data source with the highest local threshold. But the problem with this
pulling strategy is that it takes longer time as shown in Figure 1. The objective of
our work is to propose a pulling strategy that exploits the possibility of parallel
access to the services. Such a strategy aims not only at minimizing the I/O cost,
but also minimizing the time to fetch the data and hence, the time to report
top-K join results. Our data pulling strategy is explained below in Section 3.1.1.

3 Methodology

3.1 Proposed Data Pulling Strategy

We stress on such a data pulling strategy which extracts data from all Web
services in parallel. A näıve parallel pulling strategy, PRJ, keeps on extracting
data from every data source till its respective local threshold becomes lesser
or equal to the score of the then seen K-th join result. Figure 1 shows the
comparison of different data pulling strategies. It shows that the I/O optimized
HRJN* strategy has least I/O cost, but it takes more time to get top-K join
results. Whereas, PRJ is only concerned with reducing the time to get top-K
join results and it may result the extraction of unwanted data. This extraction
of unwanted data is possible if a Web service stops well before the others, that is,
its local threshold has reached below the score of the then top-K-th join result

Parallel Data Access for Multiway Rank Joins 49

in the output buffer Sresult. In this case, there is a possibility that the other Web
services having higher local thresholds produce join results with better aggregate
score values, and terminate with an even higher local threshold. Resultantly, the
Web service which stops earlier incurs extra data fetches. Therefore, in case of m
Web services maximum m−1 Web services may terminate earlier than the m-th
Web service. Our proposed data pulling strategy extracts data from all the data
sources in controlled parallel manner, the parallel data access helps minimizing
the time to get top-K join results. Whereas, the I/O cost is minimized by pausing
and resuming data extraction from the Web services. The pausing and resuming
of data extraction from a Web service with lower local threshold, are performed
on the basis of estimating the time to bring the local threshold of other Web
services with higher local thresholds below or equal to its local threshold. This
is explained in the Section 3.1.2. We use tight bounding scheme to compute the
threshold values.

3.1.1 State Machine
In order to refrain from accessing the data that do not contribute to the top-K
join results every Web service is controlled by using a state machine shown in
Figure 3. The Web services are assigned a particular state after the completion
of the processing of data fetched from any Web service. The Ready state means
that the data extraction call should be made for this Web service. It is also the
starting state for each Web service. A Web service Si is put into Wait if we
can fetch more data from any other Web service Sj and still its local threshold
τj , will remain greater than or equal to τi. The Stop state means that further
data extraction from this Web service will not contribute to determining the
top-K join results. Lastly, the Finish state means that all the data from this
Web service has been retrieved. The Stop and Finish states are the end states
of the state machine. The difference between PRJ and the proposed cPRJ is
that PRJ does not have Wait state, whereas, cPRJ controls the access to the
unwanted data by putting the Web services into Wait state. On retrieving a
chunk of tuples from Web service Si the following operations are performed in
order:

1. Its local threshold τi is updated and it is also checked if the global threshold
τ also needs to be updated.

2. New join results are computed by joining the recently retrieved tuples from
Si with the tuples already retrieved from all other Web services.

3. All join results are stored in the buffer Sresult in descending order of score.
The size of the buffer Sresult is bound by the value of K. All join results
having aggregated score above τ are reported to the user.

4. The state for Si is set using setState function shown in Figure 4(a). If Si

has extracted all its data then it is put to Finish state and τi is set to 0.

Apart from this the following operations are also performed:

1. Every Web service Si, which is not in Stop or Finish state, is checked and
is put into Stop state, if σ(t(K)

result) ≥ τi.

50 A. Abid and M. Tagliasacchi

Fig. 3. The state machine according to which each Web service is manipulated

2. A Web service Si that is in Wait state is put to Ready state, if there is no
other Web service Sj which is in Ready state and τj is greater than τi, and
Sj needs more than one chunk to bring τj lower than τi, and the minimum
time needed to bring τj less than τi is greater than RTi.

The state transitions are exemplified below in Section 3.1.3.

3.1.2 Time to Reach (ttr)
Data pulling strategy issues the data extraction calls by analyzing the local
thresholds of the Web services. Particularly, the decisions to put a service from
Ready to Wait, and Wait to Ready state are based on the computation of time
to reach (ttr). Therefore, in order to clearly understand these state transitions
we need to understand the computation of ttr. On completion of a data fetch
from Web service Si we identify all the Web services which are in Ready state
and have higher local threshold value than τi, and put them in a set J . For each
Web service Sj , in set J , we compute time to reach, (ttrj), which is the time
that Sj will take to bring τj below τi. The highest value of ttrj is considered as
ttr for Web service Si. If ttr is greater than RTi then Si is put into Wait state,
otherwise, it remains in Ready state.

The estimation of ttr involves the calculation of decay in score for the Web
service Sj . We use Autoregressive Moving Average forecasting method [2] for
the calculation of score decay. After estimating the unseen score values we can
compute the total number of tuples needed to bring the τj lower than the value
of τi. This number is then divided by the chunk size of Sj i.e. CSj , to get the
number of chunks to bring the threshold down. If number of chunks are less
than one, i.e. the after getting the data from the currently extracted chunk τj will
fall below τi, then ttrj is set to 0. Otherwise, number of chunks are multiplied
by RTj, and the elapsed time ETj, the time since the last data extraction call
is issued for Sj is subtracted i.e. ttrj = (chunks× RTj) − ETj .

3.1.3 State Transitions in the State Machine
The state transitions shown in Figure 3 are exemplified below with the help of
Figure 4(a). There are 3 Web services S1, S2 and S3 with RT1 = 400ms, RT2 =
700ms and RT3 = 900ms, for simplicity, score decay for all Web services is kept
linear.

Ready to Finish: If a Web service has been completely exhausted, i.e. all the
data from it has been retrieved then its state is changed from Ready to Finish. A

Parallel Data Access for Multiway Rank Joins 51

Web service can be put to Finish state only when it is in Ready state and makes
a data extraction. Figure 4(a) shows that after 2800ms, S2 is put from Ready to
Finish state. Ready to Stop and Wait to Stop: If a Web service is in Ready

or Wait states then it should be put into Stop state if the following condition
holds: if Sresult already holds K join results, then the algorithm compares the
local threshold τi with σ(t(K)

result), the score of K − th join result in Sresult. If τi

is less than or equal to it then it assigns Stop state to Si. This essentially means
that further extraction of data from this Web service will not produce any join
result whose score is greater than the join results already in Sresult. Figure 4(a)
shows that after 2100ms the Web service S3 is put from Wait to Stop state as
its τ3 is lower than σ(t(K)

result). Whereas, S1 is put from Ready to Stop state at
2500ms.

Ready to Ready, Ready to Wait, Wait to Ready and Wait to Wait:
A Web service in Ready state is put to Wait state, or a Web service in Wait
state is put to Ready state by analyzing the local thresholds of all other Web
services which are in Ready state. Figure 4(b) presents the algorithm for setState
function. Below is the explanation of the algorithm for a Web service Si:

– Consider a set J containing all the Web services having local thresholds
greater than that of τi and are in Ready state. The algorithm estimates the
time to reach (ttrj), for all Web services Sj ∈ J to bring τj lower than τi as
explained in Section 3.1.2.

– Thus, ttrj is computed for all Web services in J and the maximum of these
values is retained as ttr.

– If Si is in Ready or Wait state and ttr is greater than or equal to RTi then
Si is assigned Wait state, otherwise, it is put to Ready state.

Figure 4(a) shows that, after 800ms, S1 is put from Ready to Wait state because
of bootstrapping phase, as no more than 2 data extraction calls are allowed
during this phase from any Web service. This is explained below in this section.
However, even after finishing the bootstrapping, at 900ms, it remains in Wait
state as ttr2 is 1900ms which is greater than RT1. S1 continues to be in Wait
state at 1400ms and at 1800ms, as ttr is greater than RT1. Similarly, at 1800ms,
S3 is put to Wait state from Ready state, as ttr2 is 1700ms.

After 2100ms S1 is put from Wait to Ready state as at this time ttr2 is 0.
Therefore, we need to resume data extraction from S1 as well. Lastly, S2 remains
in Ready state during all the state transitions, till it moves from Ready to Finish
state at 2800ms because it remains the Web service with highest local threshold
i.e τ2 = τ .

Bootstrapping: At the beginning data is extracted from all Web services
in parallel. The phase before extraction of at least one chunk from all Web
services is considered as bootstrapping phase. The Web services with smaller
response time may fetch too much data in this phase. So, during bootstrapping,
we limit maximum two data fetches from a particular Web service. The rationale
is that these Web services have much shorter response time so they can catch

52 A. Abid and M. Tagliasacchi

(a) (b)

Fig. 4. (a) Execution of cPRJ with 3 Web services, over timeline against local thre-
sholds. (b) The setState algorithm

up the other Web services with higher response times. It can be observed in
Figure 4(a) that S1 is put to Wait state after making two fetches, at 800ms.
Similarly, at 400ms S1, and at 700ms S2, are allowed to perform second fetch.
The bootstrapping phase ends after 900ms.

Adaptivity to the Change in RT : Sometimes it is possible that a Web service
Si does not demonstrate the same response time as anticipated. To determine
this, the proposed algorithm always computes the response time for every chunk
and computes average of the last 3 observed response times. If the deviation
is within 10% of the existing response time value, then the latter is retained.
Otherwise, RTi is assigned the average of its last 3 observed RT values.

4 Concurrent Pre-fetching with cPRJ

It is possible to profile a Web service Si and identify if more than one concur-
rent calls can be issued to it. In such cases, instead of fetching one chunk at a
time from Si, the algorithm might issue Si(conc) concurrent calls. This helps in
speeding up data fetching even further, as it acquires data from Si(conc) chunks
in RTi, the same time in which the baseline cPRJ gets one chunk.

This also requires modifications in the setState function while calculating the
ttr, by incorporating the number of concurrent chunks extracted by Si. Also,
while issuing the data extraction calls, the algorithm has to check the number
of chunks a Web service needs to bring its local threshold down to σ(t(K)

result). If
they are greater than or equal to Si(conc) then all concurrent data extraction calls
can be issued. Otherwise, the number of calls is that suggested by the calculation.

Parallel Data Access for Multiway Rank Joins 53

This variant certainly reduces the time to find the top-K join as compared to
the baseline version of cPRJ. However, it may incur some additional I/O cost
because of concurrent data extraction.

Concurrent accesses to a Web service might also be considered an ethical issue
as it prevents the other users from accessing the same service at the same time,
especially in peak hours. However, in our case the total number of calls to a
Web service will still remain almost the same even if we issue them concurrently.
Secondly, the number of concurrent calls, in general is not high, and it should
be issued only for the Web services with larger response times, or which exhibit
a very low decay in their scores. As an example, in case of extracting data from
the Web services venere.com and eatinparis.com, shown in Table 1, it will
be useful to extract the concurrent chunks from them according to the ratio
between their response times, provided their score decay per chunk is observed
to be in the same ratio.

5 Experimental Study and Discussion

5.1 Methodology

Data Sets: We have conducted the experiments on both synthetic data, and
real Web services. The experiments are based on the query in Example 1 by
generating many different synthetic data sources with various parameter settings.
The relevant parameters are presented in Table 2. The real Web services used
for the experiments are presented in Table 1. These real services were queried for
finding the best combination of hotels and restaurants in a city, for many different
cities. For each city, we find the best combination of hotels and restaurants
located in the same zip code. In order to consider more than two Web services,
we have also extracted information about museums and parks from the real Web
services. The experiments with synthetic data are performed with diverse and
homogeneous settings of values for the parameters in Table 2. Homogeneous
settings help us understanding the behaviour of individual parameter whereas,
diverse settings help us simulating the real environment Web services, as we
have observed that most of them have diverse parameter settings. For fairness,
we compute these metrics over 10 different data sets and report the average. The
experiments with the real Web services are conducted by fetching the data from
real Web services for 5 different cities and the averaged results are reported.

Table 1. Real Web services used for experiments

Web Services Type of Information Response Time Chunk Size

1 www.venere.com Hotels 900 ms 15

2 www.eatinparis.com Restaurant (only for Paris) 350 ms 6

3 Yahoo! Local Hotels, Restaurants, Museums, Parks 800-1200 ms 10

4 www.yelp.com Hotels, Restaurants, Museums, Parks 900-1100 ms 10

54 A. Abid and M. Tagliasacchi

Table 2. Operating Parameters (defaults in bold)

Full Name Parameter Tested Values

Number of results K 1,20,50,100
Join Selectivity JS 0.005, 0.01, 0.015, 0.02
Score Distribution SD Uniform Distrib., Zipfian Distrib., Linear Distrib., Mixed

Response Time RT 500/500, 500/1000, 500/1500
Chunk Size CS 5/5, 5/10, 5/15
Number of relations m 2,3,4

Approaches: We compare three algorithms, HRJN*, PRJ and the proposed
cPRJ while using tight bounding scheme. An important consideration is that
HRJN* augmented with tight bounding cannot be beaten in terms of I/O cost,
whereas PRJ cannot be out-performed in terms of time taken, provided the time
taken for joining the data is negligible. Therefore, the proposed algorithm, cPRJ
carves out a solution that deals in the trade off between I/O cost and time taken.
Indeed, the parallel approaches should be efficient in terms of time taken than
the serial data accessing HRJN* approach yet, the purpose of including HRJN*
in the comparison is to elaborate the gain in terms of I/O cost when using cPRJ
instead of PRJ.

Evaluation Metrics: The major objective of the proposed approach is to reduce
the time taken to get the top-K results by minimizing the data acquisition time
with the help of parallelism. So, we consider time taken as the primary metric
for comparing different algorithms. This is the wall clock time, that is, starting
from the first fetch till the K−th join result is reported. The reduction in time is
obtained by compromising on possibly some extra data extraction as compared to
HRJN*. Therefore, we consider sum depths [5], total number of tuples retrieved
from all Web services, as other metric for comparing the different algorithms.

5.2 Results

Experiments with Synthetic Data: In Figure 5 we show the results of the
experiments for CS, RT and SD parameters while joining two Web services. In
case of the homogeneous setting of the parameters, i.e. keeping all the parameters
to the default values and setting different values for one of the three above
mentioned parameters. This results into termination of data extraction from
(m − 1), in this case, one data source earlier than the other data source, as
explained in section 3.1. The proposed cPRJ algorithm is also based on these
three parameters. Figure 5(b) shows that cPRJ incurs 1% more and PRJ incurs
8% more I/O cost than HRJN* in case of different CS values. For different values
of RT and SD both HRJN* and cPRJ take the same I/O cost, and PRJ takes
8% more and 10% more I/O cost than HRJN* for different values of RT and
SD, respectively. If we augment all these in one scenario then cPRJ incurs 3%
more I/O cost than HRJN* and PRJ costs 29% more I/O cost than HRJN*.

Parallel Data Access for Multiway Rank Joins 55

(a) (b)

Fig. 5. Performance comparison of the algorithms on synthetic data sources for the
parameters shown in Table 2

Whereas, Figure 5(a) shows that for all cases the time taken by both parallel
approaches is almost same and is much lower than HRJN*. However, if CS, RT
and SD are identical for all data sources, then all three approaches have almost
same I/O cost and both parallel approaches take same time.

The overall performance of cPRJ is much better than PRJ in case of diverse
parameter settings, as it has almost same I/O cost as of HRJN* whereas, it takes
almost same time as of PRJ, whereas, PRJ has higher I/O cost than HRJN*.
Thus, in the diverse settings it brings the best of both worlds.

Real Web Services: The experiments with the real Web services, which in
general, have diverse parameter settings, confirm the same observations made on
synthetic data, i.e. overall cPRJ performs much better than PRJ. We performed
experiments for the query in Example 1 while interacting with the real Web
services to get top-K join results. We have used different Web services, presented
in Table 1. Figure 6(a) shows that both parallel approaches take same amount
of time which is 20-25% less than HRJN*. The difference in time increase by
increasing K. Figure 6(b) shows that the I/O cost incurred by proposed cPRJ
is 5% more than ideal HRJN*, whereas, PRJ takes 8-10% extra data fetches.
We have also performed experiments by varying the number of Web services
involved in the search query. We add data for museums as third and data for
parks as fourth Web service in our search. We use Yahoo! Local and yelp.com
to fetch data for museums and parks. The results shown in Figure 6(c) show
that both parallel approaches take almost same time and this time is 14-35% less
than HRJN*. The difference in time taken by parallel approaches and HRJN*
increases by adding more data sources, i.e., by increasing the value of m. The
results presented in 6(d) demonstrate that cPRJ takes 4-11% more I/O cost than
HRJN*, whereas, PRJ takes 13-38% more I/O cost than HRJN*.

The experimental results also show that other three parameters JS, m and K
do not have any impact alone. They cannot be responsible for the early termi-
nation of a single data source. However, if SD, RT and CS have heterogeneous
values, and if the overall impact of these values is that they enforce one or more
data sources to terminate earlier than the others while using the parallel ap-
proaches, then JS, m and K also come into play. The results shown in Figures
6(a) and 6(b) show the role of K and Figures 6(c) and 6(d) show the behaviour
of number of data sources m, involved in a query.

56 A. Abid and M. Tagliasacchi

(a) (b)

(c) (d)

Fig. 6. Performance of the algorithms with real services. Figures (a) and (b) are for
the experiments with venere.com and eatinparis.com. Figures (c) and (d) are expe-
riments with different number of sources using Yahoo! Local and yelp.com

The method used to compute ttr is supposed to provide accurate estimates
when the score decay is smooth. When this is not the case (e.g. when ranking
of hotels is induced by the number of stars), it tends to underestimate the score
decay. If it underestimates the score decay then the state machine may pause a
Web service unnecessarily, which may increase the overall time. Conversely, in
case of overestimation of the score decay, the state machine may not pause a
Web service at right time, hence, it may incur extra I/O cost.

Concurrent Pre-fetching: The results in Figure 7 are based on an expe-
riment which issues different number of concurrent calls to the real Web ser-
vices, venere.com having response time 900ms and eatinparis.com having
response time 350ms. We issue concurrent calls in two ways, firstly, based on
the ratio between the response times of the two sources, and secondly, we issue
three concurrent calls for both data sources without any consideration. The re-
sults show that in both cases the time decreases by almost 62% of the baseline
cPRJ approach. This implies that venere.com takes most of the time to fetch
the data to produce required number of join results, whereas, eatinparis.com

(a) (b)

Fig. 7. Figures (a) and (b) show the comparison of time and I/O for K=20, where
cPRJ and PRJ perform different number of concurrent fetches on real Web services

Parallel Data Access for Multiway Rank Joins 57

takes one third or lesser time to fetch its data from the same purpose. Therefore,
when we fetch three concurrent chunks from venere.com and one chunk from
eatinparis.com, we get the best result. While observing the difference in the
I/O cost, we find that first method of concurrent calls has proven to be almost
as effective as baseline cPRJ whereas the second one has incurred 10% extra I/O
cost than the baseline cPRJ. More than one concurrent data fetches from a Web
service certainly minimize the time, however, using it in a smarter fashion can
also help avoiding possible extra I/O cost.

6 Related Work

We are considering rank join operators with only sorted access to the data
sources, therefore, we only discuss the existing solutions while respecting this
constraint. The NRA algorithm [4] finds the top-K answers by exploiting only
sorted accesses to the data. This algorithm may not report the exact object
scores, as it finds the top-K results using bounds; score lower bound and score
upper bound; computed over their exact scores.

Another example of no random access top-K algorithms is the J* algorithm
[1]. It uses a priority queue containing partial and complete join results, sorted
on the upper bounds of their aggregate scores. At each step, the algorithm tries
to complete the join combination at the top of the queue selecting the next
input stream to join with the partial join result and reports it as soon as it is
completed. This algorithm is expensive in terms of memory and I/O costs as
compared to HRJN* in most of the cases.

HRJN [7] is based on symmetrical hash join. The operator maintains a hash
table for each relation involved in the join process, and a priority queue to buffer
the join results in the order of their scores. The hash tables hold input tuples seen
so far and are used to compute the valid join results. It also maintains a threshold
τ and uses a data pulling strategy to compute join results. Some recent improve-
ments in HRJN algorithm are presented in [5] and [12]. These algorithms use tight
bound to compute top-K join results and show their comparative analysis.

Another interesting and objectively similar work has been done in [10], but
the proposed algorithm Upper incorporates both serial and random accesses to
the data sources, whereas, in our case we only use sorted access to the data
sources. The commonality between the two approaches is that both cPRJ and
Upper minimize the data extraction time by issuing concurrent data extraction
calls and also exploit the pre-fetching of data while respecting the number of
maximum concurrent fetches to the data sources.

7 Conclusion

We have proposed a new rank join algorithm cPRJ, for multi-way rank join
while using parallel data access. This algorithm is specifically designed for dis-
tributed data sources which have a non-negligible response time e.g. the Web
services available on the Internet. It uses a score guided data pulling strategy

58 A. Abid and M. Tagliasacchi

which helps computing the top-K join results. The results based on the expe-
riments conducted on synthetic and real Web services show that the I/O cost
of the proposed approach is nearly as low as optimal I/O cost of HRJN*, and
it computes the join results as quick as PRJ approach which cannot be beaten
in terms of time taken. cPRJ exhibits its strengths when the Web services have
such diverse parameter settings which enforce one or more data sources to ter-
minate earlier than any other data source while accessing them in parallel. We
have also exploited the concurrent data fetching property of the Web services in
order to get the data in even quick time. This reduces the time to compute the
joins even further, but at higher I/O cost than baseline cPRJ. As a next step, we
anticipate that this parallel rank join operator can be enhanced for pipe joins.

Acknowledgments

This research is part of the “Search Computing” project, funded by the European
Research Council, under the 2008 Call for “IDEAS Advanced Grants”.

References

1. Nastev, A., Chang, Y., Smith, J.R., Li, C., Vittor, J.S.: Supporting incremental
join queries on ranked inputs. In: VLDB Conference

2. Brockwell, P.J.: Encyclopedia of Quantitative Finance (2010)
3. Ceri, S., Brambilla, M. (eds.): Search Computing II. LNCS, vol. 6585. Springer,

Heidelberg (2011)
4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware.

Journal of Computer and System Sciences 66(4), 614–656 (2003)
5. Finger, J., Polyzotis, N.: Robust and efficient algorithms for rank join evaluation.

In: SIGMOD Conference, pp. 415–428 (2009)
6. Guntzer, U., Balke, W., Kiessling, W.: Towards efficient multi-feature queries in

heterogeneous environments. In: International Conference on Information Techno-
logy: Coding and Computing, Proceedings, pp. 622–628 (2001)

7. Ilyas, I., Aref, W., Elmagarmid, A.: Supporting top-k join queries in relational
databases. The VLDB Journal 13(3), 207–221 (2004)

8. Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query processing techniques
in relational database systems. ACM Computing Surveys 40(4), 1 (2008)

9. Mamoulis, N., Theodoridis, Y., Papadias, D.: Spatial joins: Algorithms, cost models
and optimization techniques. In: Spatial Databases, pp. 155–184 (2005)

10. Marian, A., Bruno, N., Gravano, L.: Evaluating top- queries over web-accessible
databases. ACM Trans. Database Syst. 29(2), 319–362 (2004)

11. Martinenghi, D., Tagliasacchi, M.: Proximity rank join. In: PVLDB, vol. 3(1), pp.
352–363 (2010)

12. Schnaitter, K., Polyzotis, N.: Optimal algorithms for evaluating rank joins in da-
tabase systems. ACM Trans. Database Syst. 35(1) (2010)

	Parallel Data Access for Multiway Rank Joins
	Introduction
	Preliminaries
	Bounding Schemes
	Data Pulling Strategy

	Methodology
	Proposed Data Pulling Strategy

	Concurrent Pre-fetching with cPRJ
	Experimental Study and Discussion
	Methodology
	Results

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

