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Abstract. We present a decentralized self-X architecture for distributed
neighborhood based search problems using an overlay network based on
random graphs. This approach provides a scalable and robust architec-
ture with low requirements for bandwidth and computational power as
well as an adequate neighborhood topology, e.g. for several instances of
parallel local search and distributed learning. Together with an adapted
load balancing schema our architecture is self-organizing, self-healing and
self-optimizing.

1 Introduction

As the number of computational resources increases faster than the computa-
tional power of single resources, in almost every discipline of computer science
flexible and scalable parallel solutions are needed in order to reduce computation
time. Usually, effective parallel and distributed algorithms are custom-made for
each problem and no general solutions exist for bigger class of problems.

In this paper we present an architecture for the class of distributed neighbor-
hood based search problems. The problems that we are interested in vary from
parallel local search to distributed learning – basically, every search problem over
a measurable search-space that can be solved efficiently by distributed search
entities that are only allowed to communicate to a small given neighborhood.
One possible scenario is the distribution of population based metaheuristics us-
ing island structures, i.e. encapsulated sub-populations, that are often used in
evolutionary algorithms or particle swarm optimization [1].

The architecture should be self-organizing, self-healing and self-optimizing,
since it should be able to deal with heterogeneous, dynamic and unreliable large-
scale environments. During the last decade, peer-to-peer networks, i.e. a commu-
nication structure in which individuals interact directly without going through a
centralized system or hierarchy, has proven to be an adequate solution for such
requirement. In order to achieve self-organization, overlay networks are placed on
top of the physical networks. Since in contrast to well-known P2P applications
like file sharing we have no requirement for lookup-operations to locate explicit
peers or data in the network, there is no need for structured overlay topologies,
e.g. based on distributed hash tables. Instead, in order to minimize the overhead
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for construction and maintenance, we design a new randomized overlay network
that meets all requirements.

2 Fundamentals

Since the architecture, in particular the overlay network, presented in this paper
is based on a construction schema for random graphs with low mixing times, we
first introduce some basic definitions for graphs, markov chains, mixing times
and random graphs.

An undirected graph G is a pair G = (V, E) of a set V of n vertices or nodes
and a set E ⊆ V × V of edges. The degree deg(v) of a node v is the number
of edges starting (or ending) in v. A Graph G is d-regular, iff all nodes have
degree d. A path is a sequence (v1, . . . , vm) of nodes where each successive pair
is connected by an edge in E. A graph G is connected, iff G contains a path
between each pair of different nodes.

For the construction schema used in this paper, we will need to draw nodes
nearly uniformly distributed out of the set of all nodes V without knowing the
entire set. For that matter a random walk on the graph comes in handy. Given a
pair (Ω, P ) of the finite denumerable state space Ω and the stochastic (Ω ×Ω)-
matrix P = (pxy). A sequence X1, X2, . . . of random variables is called Markov
chain, iff it satisfies the Markov property

Pr[Xn+1 = y|Xn = xn, . . . , X1 = x1] = Pr[Xn+1 = y|Xn = xn] = pxny,

for all n ≥ 0 and x0, . . . xn, y ∈ Ω. By interpreting nodes as states and edges
as transitions a graph can be seen as a Markov chain where Ω = V and the
stochastic matrix P is denoted by pij := 1/ deg(i) iff there is an edge from node
i to node j. Starting with the probability vector μ(0), where μ

(0)
i := Pr[X0 = xi],

the distribution at time step t+1 can be calculated from time step t with μ(t+1) =
μ(t)P , hence μ(t) = μ(0)P t. For t → ∞ on a non-bipartite undirected graph the
corresponding Markov chain has a unique stationary distribution π = Pπ, where
πi = deg(i)/2|E| [2]. Hence when starting at an arbitrary node x and performing
a random walk on a d-regular graph the distribution P t(x, .) of the node visited
at time t will converge towards a uniform distribution over all nodes in V .

The mixing time τ(ε) is the minimum number of time steps needed to almost
reach the stationary distribution, i.e. to have a maximal total variation distance
between both distributions of less than ε (for details see [3]). A markov chain is
considered rapid mixing if τ(ε) ∈ O(poly(log(n/ε))) holds. It can be shown, that
the mixing time τ(ε) is bounded by

(
1

γ(P )
− 1

)
ln

1
2ε

≤ τ(ε) ≤ 1
γ(P )

ln
(

1
επmin

)
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where πmin := minx∈Ω π(x) and γ(P ) is the spectral gap, i.e. the distance be-
tween the largest and the absolute second largest eigenvalue of the stochastic
matrix P [3]. Hence having a large spectral gap leads to fast mixing times.
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3 Designing the Overlay Network

3.1 Requirements and Goals

The design purpose of our overlay network is to provide an architecture for
distributed neighborhood based search in dynamic and unreliable large-scale en-
vironments. Since we focus on self-organizing, self-healing and self-optimization
our main requirements for the overlay network are:

The communication structure should be well suited for neighborhood
based search. We study distributed search entities, that are only allowed to
communicate to a small neighborhood, given by the overlay network. In order to
ensure fast spreading of important information the shortest way to the furthest
entity should be as short as possible. Hence the graph of the overlay network
should have a small diameter. A little opposing to the small diameter the number
of direct neighbors of each entity, i.e. their degree in the respective graph, should
be relatively small. This way even the communication costs of events that have
to be spread to the entire neighborhood stay small for each entity.

The overlay network should allow dynamic joining and leaving and be
robust against loss of connections and sub systems (self-organization
and self-healing). One possible consequence of the requirement for robustness
is that the corresponding graph should have a high degree, so that with high
probability the loss of one connection has no significant effect. Another way is to
let each entity have a list of backup-neighbors in case connections to neighbors
fail. However losing an edge could still lead to decomposition of a connected
graph to sub graphs. Hence as major requirement the graph should have a high
bisection width so that a decomposition becomes highly improbable.

Operations for construction and maintenance need to be scalable to
the network size (self-adaptive) and low cost intensive in computa-
tional, memory and bandwidth terms. The construction and maintenance
of the overlay network should be at most logarithmic in the number of peers for
the above-mentioned terms. Additionally the graph structure should be easily
expandable, i.e. construction and maintenance should never necessitate restruc-
turing and hence blocking times for communication.

Finally, the structure should be well suited for diffusion based load
balancing (self-optimization). The diffusion schema is an iterative and local
procedure for decentralized load balancing, as it only uses information of a node
and its direct neighbors. We deal with a dynamic and heterogeneous environ-
ment, where each entity only knows a small neighborhood. Diffusion based load
balancing is the only procedure known to the authors, that meets all require-
ments. In order to have a fast convergence to a balanced state the corresponding
graph needs to have a high spectral gap in the diffusion matrix [4].

3.2 Model and Algorithmic Description

Some of the requirements given in the previous section result in opposed objec-
tives. While lower boundable degrees are desirable for scalability and resource
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allocation reasons, they may not lead to dense graphs with small diameters. In
order to reach a trade-off between these objectives, an appropriate graph struc-
ture has to be chosen.

One example for a good compromise are expander graphs. They are defined
over the expansion ratio h(G) = min1≤|S|≤n

2

|∂S|
|S| , which is a measure for density.

A family of expander graphs is an infinite sequence (Gi)i∈� of d-regular graphs
with increasing sizes, if there is a ε > 0, so that h(Gi) ≥ ε for all i ∈ �. Expander
graphs as network models result in very good run-time performance in diffusion
load-balancing, e.g. a static expander graph achieves in O(1/ε) steps a ε-balanced
state [4]. Also, expander graphs have the useful property of logarithmic mixing-
times for approximately uniform sampling.

Distributed construction of expander graphs is not a trivial task, especially in
unreliable dynamic environments. One possible method are �-Graphs [5]. A 2d-
regular random graph is constructed, which consists of d Hamilton circles. Every
node knows its predecessors and successors for each circle. When a new node
enters the network, for each Hamilton circle a node is chosen as insertion position
via random walk sampling. Afterwards the predecessor/successor-tables of the
involved nodes are updated. Hence each node has exactly 2d neighbors. It can
be shown that these graphs are expander graphs and therefore provide uniform
distributed sampling via logarithmic random walks [5]. A negative aspect for our
purpose is that amongst others the failure of some connections can lead to a total
restructuring process and that small graphs have to be considered separately [5].

In order to avoid these downsides we want to build an expander-similar graph
with a lower bounded expansion ratio but not necessarily d-regularity and hope
to keep the resulting properties of an expander graph like small diameter, a low
degree and logarithmic mixing-times. This is achieved by a randomized graph
construction schema where each node has the same expected degree with an as
low as possible variance:

The network is modeled by a tuple (G, S, T ) with an undirected graph G =
(V, E), where v ∈ V are participating peer nodes and {v1, v2} ∈ E are direct
connections between peer nodes. Variable S = (Sv)v∈V describes the configura-
tion of sample pools with Sv ⊆ V \ v from which we assume at this moment,
that members of Sv are (approximately) uniformly distributed in V/{v}. Sym-
bol T is a tuple T =

(
d, τ∗, η, dmax

)
which describes global parameters, where

d indicates the target degree, τ∗ indicates the minimum random walk length,
η indicates the maximum sample pool size and dmax indicates an upper bound
for degrees. Because G and S are time mutable, the precise notation would be
(G(t), S(t), T ) with time t, but for better readability we leave (t) out.

Each peer w regulates its current degree |Nbw| to the target degree d by
periodically adding or removing the corresponding number of neighbors. To add
a neighbor, a node v is randomly drawn from Sw \Nbw and a connection to v is
established. To remove a neighbor, a node v is randomly drawn from Nbw and
the connection to v is dropped.

Figure 1 shows the basic algorithms to fill a sample pool and to sample through
a random walk. FillPoolw, which is called periodically on each peer w, is



A Decentralized Architecture for Distributed Neighborhood Based Search 197

FillPoolw()

k ← η − |Sw|1

for i← 1, ..., k do2

v ← Samplew(τ∗)3

if v /∈ Sw ∧ v �= w then4

Sw ← Sw ∪ {v}5

Samplew(t)

if t ≤ 0 then return w1

i←uniform i.i.d. over {1, ..., dmax}2

if i > |Nbw| then return Samplew(t− 1)3

u← i-th node in Nbw4

return Sampleu(t− 1)5

Fig. 1. Pseudocode for sample pool filling and random walk sampling

responsible for filling sample pool Sw with approximately uniform distributed
elements over (V \w). The number of added samples is denoted by the difference
between target sample pool size η and the current pool size. Sampling is done
via random walks of length τ∗ through call of Samplew. Pooled sampling brings
two major advantages against on-demand sampling: Instant access on samples for
faster regulation in case of differing degrees and advanced capability for network
reconstruction in case of global failures (when many nodes or connections fail
at once), in which on-demand sampling may not be able to reach the entire
network.

Samplew(t) performs a random walk of (remaining) length t. Due to possible
irregularity of network graph G (which would lead to a non-uniform stationary
distribution), a technique called max degree random walk is used to simulate
a random walk on a undirected regular graph G′ = (V, E′) with E′ ⊇ E :
For each node w ∈ V , a number of (dmax − |Nbw|) self-loops are additionally
added to E′. Parameter dmax should be with almost sure probability an upper
bound for all occurring node degrees. For G′ the resulting transition matrix
P has the entries Pv,w = 1/dmax for w ∈ Nbv, the diagonal entries Pv,v =
1 − |Nbv|/dmax and zero entries elsewhere. This markov chain is simulated by
the described local or remote recursive calls depending on a random value i in
Samplew(t). In case of a connected network graph G, graph G′ will also be
connected and because of the added self-loops G′ cannot be bipartite. Hence
the markov chain on transition matrix P has a unique stationary distribution
π = (1/|V |, . . . , 1/|V |) (see section 2). If spectral gap γ(P ) can be lower bounded,
a mixing-time τ(ε) in O(log(|V |)) is sufficient (see inequation (1)). Resulting
spectral gaps of our model are analyzed in section 4.

3.3 Load Balancing

In diffusion load balancing for a network G = (V, E) with heterogeneous subsys-
tems v ∈ V with benchmark factors cv, the update equations of work load Wv

and work float yvw between two subsystems v and w at time step t are:

W (t)
v = W (t−1)

v −
∑

w:{v,w}∈E

y(t)
vw y(t)

vw = αvw

(
W

(t−1)
v

cv
− W

(t−1)
w

cw

)
.
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Table 1. Spectral gaps of different network sizes n and minimum random-walk lengths
τ∗ in 30 simulations

n τ∗ = 8 τ∗ = 12 τ∗ = 16 τ∗ = 20 τ∗ = 24

500 0.0863 0.0889 0.0897 0.0889 0.0900

1000 0.0809 0.0854 0.0862 0.0866 0.0870

2000 0.0796 0.0848 0.0855 0.0858 0.0859

4000 0.0783 0.0845 0.0850 0.0852 0.0852

8000 0.0780 0.0842 0.0847 0.0849 0.0851

16000 0.0767 0.0841 0.0846 0.0848 0.0849

32000 0.0765 0.0841 0.0845 0.0847 0.0848

64000 0.0768 0.0840 0.0845 0.0847 0.0848

(a) Target degree d = 6, Mean values

n τ∗ = 8 τ∗ = 12 τ∗ = 16 τ∗ = 20

500 0.0823 0.0846 0.0844 0.0843 0.0845

1000 0.0714 0.0829 0.0838 0.0845 0.0854

2000 0.0746 0.0822 0.0838 0.0840 0.0842

4000 0.0711 0.0836 0.0843 0.0843 0.0841

8000 0.0724 0.0833 0.0841 0.0842 0.0845

16000 0.0663 0.0834 0.0842 0.0845 0.0847

32000 0.0684 0.0836 0.0843 0.0845 0.0845

64000 0.0648 0.0819 0.0842 0.0845 0.0845

(b) Target degree d = 6, Minimum values

M = (αvw) is called diffusion matrix with 0 < αvw < 1 for {v, w} ∈ E, otherwise
αvw = 0. Rate of convergence (how fast a balanced state is reached) depends
on the spectral gap of M [4]. If we choose α = (1/dmax), the diffusion matrix
equals our transition matrix P , hence we can use the results for spectral gaps in
section 4. Since distributed computation often only allows unnormalized bench-
marking factors bv, a locally Euclidean normalization cv = bv/

√
b2
v + b2

w can be
applied for each pair of neighbors (v, w) ∈ E. If the distributed search problem
requires steady cooperation between entities (e.g. migration in island structured
metaheuristics), there is a need of constant information exchange between neigh-
bors. Therefore a minimal float smin is introduced for the computation of each
outgoing float s

(t)
vw:

s(t)
vw = smin + max

{
0 , α(t)

vw

√
b2
v + b2

w

(
W

(t−1)
v

bi
− W

(t−1)
w

bw

)}

It must be pointed out that the minimal float interferes with load balancing on
the way to the balanced state.

4 Evaluation

The main question of our evaluation is whether our construction schema produces
graphs with expander-similar properties, i.e. leads to lower boundable expansion
ratios? The verification is done by locally simulating several networks based on
the described algorithm and analyzing the spectral gaps of their resulting graphs.

During simulation, new nodes are injected with rate |V | ·αjoin, existing nodes
leave the network with rate |V | · αleave (rates lower than 1 are interpreted as
probabilities) and existing connections fail with probability αfail. In our simula-
tions αjoin is set to 0.4, αleave is set to 0.1 and αfail to 0.01. When the networks
reaches a designated size, simulation is stopped and the resulting adjacency ma-
trix is saved for eigenvalue and spectral gap computations.
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Simulations with network sizes up to 64.000 nodes were performed. Table 1
shows to resulting spectral gaps. As you can see, the mean values of the simu-
lation decrease with expanding network size. The diagonal entries in the tables
suggest that spectral gaps can be lower bounded by using logarithmic minimum
random-walk lengths.

Compared to structured P2P construction schemas like CHORD [6] the spec-
tral gap of our topology does not appear to decrease monotonously with increas-
ing number of peers. An extensive comparison of different topologies is in work.

5 Application

A first application of the presented architecture is based on distributed particle
swarm optimization (PSO). PSO is a population-based metaheuristic for which
one way of parallelization is the separation of the population into islands of sub-
populations. Each island is computed by a different peer node in the described
topology. Information exchange between islands is performed by periodic migra-
tions of population members (particles) between adjacent peer nodes. The ad-
vantage of our network topology is reflected in an efficient spread of information
in the entire network via such local exchange. Compared to other decentralized
approaches for PSO (e.g. [7]) with simple topologies (e.g. circles), first results on
heterogeneous networks suggests fast global information exchange with a mod-
erate number of messages and a strong convergence to a load balanced state.
Further results will be published soon.

6 Conclusion and Future Work

In this paper an innovative decentralized self-X architecture for distributed
neighborhood based search problems is presented exploiting a P2P-based ap-
proach. The overlay network based on random graphs is built using approximate
sampling by random walks with local sample pools. This leads on the one hand
to a scalable and robust structure with low requirements for bandwidth and
computational power and on the other hand provides an adequate neighborhood
topology. Diffusion based load balancing ensures efficient computation on hetero-
geneous systems. First experiment series on a simulation of the overlay network
demonstrate the properties of our architecture.

The properties of the overlay network and the corresponding random graphs
are shown through simulation, but not theoretically proven yet. It would be
interesting to analyze the network more theoretically, e.g. in order to achieve
tighter bounds. In Addition, further simulations and evaluations are needed.
First experiments with our load balancing schema show promising results but
lack precise evaluation. The robustness of the overlay network has to be eval-
uated and test series with distributed neighborhood based search scenarios are
needed. First positive results were achieved for particle swarm optimization and
we are currently working on distributed learning scenarios. Another interesting
point would be an empirical comparison with other random graphs as well as
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flooding- and especially DHT-based P2P networks for which we expect expander
similar properties. Furthermore, we are currently working on a self-configuration
approach for parameters T =

(
d, τ∗, η, dmax

)
. In particular the choice of a suffi-

cient random walk length τ∗ depends on the network size, for which estimation
techniques are needed.
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